Check for updates

Reply to: Multiple drivers of Miocene C₄ ecosystem expansions

Pratigya J. Polissar[®]^{1⊠}, Cassaundra Rose^{®2,4}, Kevin T. Uno^{®3}, Samuel R. Phelps^{®2,5} and Peter deMenocal^{2,3}

REPLYING TO E. Schefuß and L. M. Dupont Nature Geoscience https://doi.org/10.1038/s41561-020-0590-5 (2020)

We thank Schefuß and Dupont¹ for their interest in our research and respond to their comments below.

Identifying the emergence of C₄ ecosystems

We identify the emergence and expansion of C_4 ecosystems in four different sediment cores from two oceans, including regions offshore Northwest, West and East Africa. The patterns of $\delta^{13}C$ change are common to all sites, synchronous at ~10 Myr ago (Ma), replicated in timing by the C_4 dietary signature of East African mammals^{2,3} and consistent with what is known about leaf-wax *n*-alkanes in modern African vegetation (see refs. ^{4,5} and references therein). Any alternative interpretation of the data must address these observations.

We identified two distinct events using the four sediment cores. The first was the emergence of C_4 vegetation at ~10 Ma, which was followed by the second event: their rise to dominance at the ecosystem scale. It is the totality of the δ^{13} C patterns in all homologues that we use to identify the initial increase in contributions from C₄ plants at all four sites. As described in our paper⁶, we observe the greatest increase in n-C₃₅ δ^{13} C values after ~10 Ma and progressively smaller increases in sequentially shorter odd-numbered homologues $(n-C_{33})$ *n*-C₃₁). The δ^{13} C changes in the longer chain lengths are substantial and statistically significant: at ODP 659 the isotopic value of n-C₃₅ at 10.07 Ma is +1.3% from the mean of older samples, and at 9.9 Ma is +1.7%, +3.0 and +4.1 s.d. from the mean, respectively. Changes in $n-C_{33}$ are similarly significant: +1.67% from the long-term mean by 9.68 Ma (+3.2 s.d.). These positive δ^{13} C changes mark the beginning of almost 5 Myr of increasing δ^{13} C values and indicate the onset of C₄ ecosystem expansion in Northwest Africa. Furthermore, the timing of detected $\delta^{13}C$ shifts across homologues (first *n*-C₃₅, then *n*-C₃₃, then $n-C_{31}$ is exactly as expected from the greater contributions of C_4 vegetation to longer-chain *n*-alkanes in modern African vegetation: modern C₄ grasses in Africa make more n-C₃₅ and n-C₃₃ than C₃ plants (see ref. ⁴). In contrast, n-C₃₁ or weighted average δ^{13} C values will miss the early presence of C4 plants because they require substantial contributions from C4 vegetation before any isotopic change can be confidently identified. For example, the n-C₃₁ δ^{13} C values do not significantly increase until 9.26 Ma, reaching +1.5‰, or +3.7 s.d. above the mean from pre-10.1 Ma samples.

The sensitivity of longer-chain *n*-alkanes to the contributions of C_4 plants is further supported by the first evidence of C_4 diets in equids by 9.9 Ma, the same time as the onset of C_4 expansion identified by *n*-alkane $\delta^{13}C$ in East Africa^{2,3,6}. The dietary $\delta^{13}C$ signature in

the tooth enamel of a grazing taxon is more sensitive to a low abundance of C_4 vegetation in the landscape due to their selective feeding on grasses, similar to the amplified contribution of African C_4 grasses to the n- C_{33} and n- C_{35} long-chain n-alkanes in sediments. By 9.3 Ma, the presence of C_4 vegetation in East Africa supported a variety of mixed and C_4 -dominated diets (50–100% C_4) in equid, rhino, bovid, hippo, suid and gomphothere lineages, demonstrating their role as an important dietary resource for large and megaherbivores².

We observe increasing abundances of longer-chain C_{33} and C_{35} *n*-alkanes at the two east African core sites (DSDP 235 and 241), matching the increasing C_4 contribution in the δ^{13} C values. We discussed the *n*-alkane distributions at ODP 659 and 959 in the supplementary information of our study⁶. Briefly, ODP 659 and 959 *n*-alkane distributions are similar across the onset and expansion of C_4 ecosystems. However, the δ^{13} C values of all chain lengths at all four sites clearly demonstrate a greater abundance of the longer-chain *n*- C_{33} and *n*- C_{35} alkanes in the C_4 plant contribution to the samples (as observed in modern African plants and Holocene sediments)^{4,5,7}. Therefore, the data from ODP 659 and 959 simply require that C_4 plants are replacing one of the C_3 sources with similar *n*-alkane distributions (as shown by the δ^{13} C signatures), perhaps reflecting an already dry climate as suggested by ref.⁸.

We observe statistically significant increases in *n*-alkane δ^{13} C values starting at ~10 Ma, and sustained increases after this without a return to the pre-10 Ma values (except one sample at ~8 Ma from ODP 959). We therefore conclude that the signature of increasing δ^{13} C values reflects the contributions of C₄ plants, as corroborated by the inclusion of C4 plants in herbivore diets beginning at 9.9 Ma. If this were not the case, these results would require an initial increase in the δ^{13} C values of C₃ plant contributions to the longer-chain *n*-alkanes followed by a replacement with increasing amounts of C₄ plants. In bulk leaf tissues from C₃ plants, such δ^{13} C increases can occur by decreasing mean annual precipitation^{9,10}. However, the magnitude of the required changes in mean annual precipitation is substantial. For example, an increase of +1.3% as observed in the n-C₃₅ alkane at 10.07 Ma at ODP 659 would require a 42% decrease in mean annual precipitation9 over 0.7 Myr that was then sustained for several millions of years. Such a change is not supported by other proxy data, including the leaf-wax δD values. Other factors influencing bulk leaf tissue $\delta^{\rm 13}C$ values, such as a canopy effect¹⁰, are unlikely, as the middle Miocene vegetation in Northwest and East Africa was already a dry woodland with grass

¹Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA, USA. ²Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA. ³Division of Biology and Paleo Environment, Lamont-Doherty Earth Observatory, Palisades, NY, USA. ⁴Present address: Governor's Office of Policy Innovation and the Future, State of Maine, Augusta, ME, USA. ⁵Present address: Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA. ^{See}-mail: polissar@ucsc.edu

MATTERS ARISING

elements, and in these environments such effects are minimal (as discussed in our original contribution⁶).

We recognize the possible inclusion of lycopane in the n- C_{35} alkane δ^{13} C measurement. However, we find no detectable contribution from this molecule through sensitive screening by ion ratios in gas chromatography-mass spectrometry analysis. Furthermore, the δ^{13} C patterns across *n*-alkane molecules are consistent with a modern C₄ grass plant-wax source but not with lycopane co-elution. These leaf-wax δ^{13} C patterns also occur at all four core sites despite very different oceanographic settings, indicating a plant-wax signal rather than a marine algal source. Finally, as noted above, the timing of the δ^{13} C increase in East Africa identified in the *n*-C₃₅ (and other) alkanes coincides with the presence of dietary C₄ in East African equids, which are also more sensitive to a low abundance of C₄ vegetation in the landscape.

Absence of aridification

We used the δD values of leaf-wax *n*-alkanes (accounting for vegetation change) to detect changes in rainfall patterns based on theoretical grounds for this relationship (see ref.¹¹ and references therein) and empirical evidence from modern Africa^{12,13}. The observation from modern and historical African sediments that plant-wax (and rainfall) δD is highly correlated with spatial and temporal patterns in measured rainfall amount should directly inform the interpretation of rainfall δD on longer timescales. That other factors such as moisture source region might affect the baseline or magnitude of this relationship is understood, but unlikely to have changed in our study locations. Moisture in Northwest Africa is sourced from the subtropical Atlantic Ocean, and moisture in East Africa from the Indian Ocean. The major wind patterns and the substantial east-west extent of the African continent at these latitudes precludes major contributions from other sources, in contrast with the core site in southwest Africa mentioned by Schefuß and Dupont¹. Furthermore, climate model studies of highly altered palaeogeography (such as ref.¹⁴) suggest that these sources remained stable through time. Other effects, such as temperature, reflect the underlying atmospheric water balance (see ref.¹⁵), and are largely non-existent in the tropics. For example, the spatial rainfall isotopetemperature relationship¹⁶ overestimates the temporal slope, and the slope in tropical regions may in fact be close to zero¹⁷. Finally, the increase in dust flux that we document occurs much later than the initiation of C4 ecosystem expansion. As has been shown for more recent time periods, African dust fluxes largely reflect increased wind strength and transport, and are not a reliable indicator for aridity¹⁸.

Sampling resolution

Our sampling resolution is sufficient to detect long-term changes in plant-wax δD (and therefore hydroclimate) that would be required to sustain any permanent shift towards a C_4 ecosystem. We demonstrated through detailed analysis that the variability we observe in δD is consistent with Pleistocene and Pliocene orbitally driven variability at ODP 659^{19,20} and that we would be able to detect any substantial shift or trend in δD values required for a hydrologic driver for C_4 ecosystem establishment (see supplementary figs. 9 and 10 in ref.⁶).

Drivers of C₄ ecosystem establishment

In conclusion, we regard the consistent data from four different sites in two distinct geographic regions as evidence for the early establishment of C_4 ecosystems in Northwest and East Africa in the absence of aridification. The parsimonious explanation is that declining CO_2 levels drove the emergence of these ecosystems. The divergence of proxy CO_2 estimates through this time interval is a central problem in palaeoclimate studies that many research groups are working on from different angles. A decline in CO_2 preceding and accompanying the emergence of C_4 ecosystems is consistent with recent CO_2 estimates for this time period^{21,22}. Because we rule out any substantial temperature or hydrologic change, our data support the argument of Herbert et al.²³ and the hypothesis of Cerling et al.²⁴ and Ehleringer et al.²⁵: the late Miocene temperature decline and early African C_4 ecosystem expansion were driven by declining CO_2 .

Online content

Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/ s41561-020-0591-4.

Received: 17 October 2019; Accepted: 12 May 2020; Published online: 2 July 2020

References

- Schefuß, E. & Dupont, L. M. Multiple drivers of Miocene C₄ ecosystem expansions. *Nat. Geosci.* https://doi.org/10.1038/s41561-020-0590-5 (2020).
- Uno, K. T. et al. Late Miocene to Pliocene carbon isotope record of differential diet change among East African herbivores. *Proc. Natl Acad. Sci.* USA 108, 6509–6514 (2011).
- Uno, K. T., Polissar, P. J., Jackson, K. E. & deMenocal, P. B. Neogene biomarker record of vegetation change in eastern Africa. *Proc. Natl Acad. Sci.* USA 113, 6355–6363 (2016).
- Bush, R. T. & McInerney, F. A. Leaf wax *n*-alkane distributions in and across modern plants: implications for paleoecology and chemotaxonomy. *Geochim. Cosmochim. Acta* 117, 161–179 (2013).
- 5. Garcin, Y. et al. Reconstructing C₃ and C₄ vegetation cover using *n*-alkane carbon isotope ratios in recent lake sediments from Cameroon, Western Central Africa. *Geochim. Cosmochim. Acta* **142**, 482–500 (2014).
- Polissar, P. J., Rose, C., Uno, K. T., Phelps, S. R. & deMenocal, P. Synchronous rise of African C₄ ecosystems 10 million years ago in the absence of aridification. *Nat. Geosci.* 12, 657–660 (2019).
- Garcin, Y. et al. Hydrogen isotope ratios of lacustrine sedimentary *n*-alkanes as proxies of tropical African hydrology: insights from a calibration transect across Cameroon. *Geochim. Cosmochim. Acta* 79, 106–126 (2012).
- 8. Eley, Y. L. & Hren, M. T. Reconstructing vapor pressure deficit from leaf wax lipid molecular distributions. *Sci. Rep.* **8**, 3967 (2018).
- Diefendorf, A. F., Mueller, K. E., Wing, S. L., Koch, P. L. & Freeman, K. H. Global patterns in leaf ¹³C discrimination and implications for studies of past and future climate. *Proc. Natl Acad. Sci. USA* 107, 5738–5743 (2010).
- Kohn, M. J. Carbon isotope compositions of terrestrial C₃ plants as indicators of (paleo)ecology and (paleo)climate. *Proc. Natl Acad. Sci. USA* 107, 19691–19695 (2010).
- Sachse, D. et al. Molecular paleohydrology: interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms. *Annu. Rev. Earth Planet. Sci.* 40, 221–249 (2012).
- Niedermeyer, E. M. et al. The stable hydrogen isotopic composition of sedimentary plant waxes as quantitative proxy for rainfall in the West African Sahel. *Geochim. Cosmochim. Acta* 184, 55–70 (2016).
- 13. Tierney, J. E., Pausata, F. S. R. & deMenocal, P. B. Rainfall regimes of the Green Sahara. *Sci. Adv.* **3**, e1601503 (2017).
- Zhang, Z. et al. Aridification of the Sahara desert caused by Tethys Sea shrinkage during the Late Miocene. *Nature* 513, 401–404 (2014).
- Boyle, E. A. Cool tropical temperatures shift the global δ¹⁸O-T relationship: an explanation for the ice core δ¹⁸O-borehole thermometry conflict? *Geophys. Res. Lett.* 24, 273–276 (1997).
- 16. Dansgaard, W. Stable isotopes in precipitation. Tellus 16, 436–468 (1964).
- Guan, J. et al. Understanding the temporal slope of the temperature-water isotope relation during the deglaciation using isoCAM3: the slope equation. *J. Geophys. Res. Atmos.* **121**, 10342–10354 (2016).
- Mcgee, D., Broecker, W. S. & Winckler, G. Gustiness: the driver of glacial dustiness? *Quat. Sci. Rev.* 29, 2340–2350 (2010).
- Kuechler, R. R., Schefuss, E., Beckmann, B., Dupont, L. & Wefer, G. NW African hydrology and vegetation during the Last Glacial cycle reflected in plant-wax-specific hydrogen and carbon isotopes. *Quat. Sci. Rev.* 82, 56–67 (2013).
- Kuechler, R. R., Dupont, L. M. & Schefuss, E. Hybrid insolation forcing of Pliocene monsoon dynamics in West Africa. *Climate* 14, 73–84 (2018).
- 21. Stoll, H. M. et al. Upregulation of phytoplankton carbon concentrating mechanisms during low CO₂ glacial periods and implications for the phytoplankton pCO₂ proxy. *Quat. Sci. Rev.* **208**, 1–20 (2019).

NATURE GEOSCIENCE

MATTERS ARISING

- 22. Wang, Y., Momohara, A., Wang, L., Lebreton-Anberrée, J. & Zhou, Z. Evolutionary history of atmospheric CO₂ during the Late Cenozoic from fossilized *Metasequoia* needles. *PLoS ONE* **10**, e0130941 (2015).
- 23. Herbert, T. D. et al. Late Miocene global cooling and the rise of modern ecosystems. *Nat. Geosci.* 9, 843–847 (2016).
- Cerling, T. E. et al. Global vegetation change through the Miocene/Pliocene boundary. *Nature* 389, 153–158 (1997).
- Ehleringer, J. R., Cerling, T. E. & Helliker, B. R. C₄ photosynthesis, atmospheric CO₂, and climate. *Oecologia* 112, 285–299 (1997).

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2020

MATTERS ARISING

Author contributions

The authors contributed equally.

Competing interests

The authors declare no competing interests.

NATURE GEOSCIENCE

Additional information

Correspondence and requests for materials should be addressed to P.J.P. Peer review information Primary Handling Editor: James Super.

Reprints and permissions information is available at www.nature.com/reprints.