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INTRODUCTION: Inherent in traditional views of
ape origins is the idea that, like living apes,
early large-bodied apes lived in tropical forests.
In response to constraints related to locomot-
ing in forest canopies, it has been proposed that
early apes evolved their quintessential upright
torsos and acrobatic climbing and suspensory
abilities, enhancing their locomotor versatility,
to distribute their weight among small sup-
ports and thus reach ripe fruit in the terminal
branches. This feeding and locomotor transi-
tion from a quadruped with a horizontal torso
is thought to have occurred in the Middle
Miocene due to an increasingly seasonal cli-
mate and feeding competition from evolving

monkeys. Although ecological and behavioral
comparisons among living apes and monkeys
provide evidence for versions of terminal branch
forest frugivory hypotheses, corroboration from
the early ape fossil record has been lacking, as
have detailed reconstructions of the habitats
where the first apes evolved.

RATIONALE: The Early Miocene fossil site of
Moroto II in Uganda provides a unique op-
portunity to test the predictions of terminal
branch forest frugivory hypotheses. Moroto II
documents the oldest [21million years ago (Ma)]
well-established paleontological record of ape
teeth and postcranial bones from a single lo-

cality and preserves paleoecological proxies
to reconstruct the environment. The follow-
ing lines of evidence from Moroto II were
analyzed: (i) the functional anatomy of fe-
mora and a vertebra attributed to the ape
Morotopithecus; (ii) dental traits, includingmo-
lar shape and isotopic profiles ofMorotopithecus
enamel; (iii) isotopic dietary paleoecology of
associated fossil mammals; (iv) biogeochemical
signals from paleosols (ancient soils) that re-
flect local relative proportions of C3 (trees and
shrubs) and C4 (tropical grasses and sedges
that can endure water stress) vegetation as well
as rainfall; and (v) assemblages of phytoliths,
microscopic plant-derived silica bodies that
reflect past plant communities.

RESULTS: A short, strong femur biomechani-
cally favorable to vertical climbing and a ver-
tebra indicating a dorsostable lower back
confirm that ape fossils fromMoroto II shared
locomotor traits with living apes. Both
Morotopithecus and a smaller ape from the
site have elongated molars with well-developed
crests for shearing leaves. Carbon isotopic sig-
natures of the enamel of these apes and of
other fossil mammals indicate that some mam-
mals consistently fedonwater-stressedC3plants,
and possibly also C4 vegetation, in a woodland
setting.Carbon isotopevaluesofpedogenic carbon-
ates, paleosol organic matter, and plant waxes all
point to substantial C4 grass biomass on the
landscape. Analysis of paleosols also indicates
subhumid, strongly seasonal rainfall, and phyto-
lith assemblages include forms from both arid-
adapted C4 grasses and forest-indicator plants.

CONCLUSION: The ancient co-occurrence of
dental specializations for leaf eating, rather
than ripe fruit consumption, along with ape-
like locomotor abilities counters the predic-
tions of the terminal branch forest frugivory
hypotheses. The combined paleoecological
evidence situates Morotopithecus in a wood-
land with a broken canopy and substantial
grass understory including C4 species. These
findings call for a new paradigm for the evo-
lutionary origins of early apes. We propose that
seasonal, wooded environments may have ex-
erted previously unrecognized selective pres-
sures in the evolution of arboreal apes. For
example, some apes may have needed to
access leaves in the higher canopy in times of
low fruit availability and to be adept at as-
cending and descending from trees that lacked
a continuous canopy.▪
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A  Traditional hominoid habitat reconstruction

B  Reconstructed Moroto II hominoid habitat 21 Ma

Hominoid habitat comparisons. Shown are reconstructions of a traditionally conceived hominoid habitat
(A) and the 21 Ma Moroto II, Uganda, habitat (B).
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The evolution of hominoid locomotor versatility:
Evidence from Moroto, a 21 Ma site in Uganda
Laura M. MacLatchy1,2*, Susanne M. Cote3, Alan L. Deino4, Robert M. Kityo5, Amon A. T. Mugume5,6,
James B. Rossie7, William J. Sanders1,2, Miranda N. Cosman1, Steven G. Driese8, David L. Fox9,
April J. Freeman8, Rutger J. W. Jansma10, Kirsten E. H. Jenkins11, Rahab N. Kinyanjui12,13,14,
William E. Lukens15, Kieran P. McNulty16, Alice Novello17,18, Daniel J. Peppe8,
Caroline A. E. Strömberg18, Kevin T. Uno19, Alisa J. Winkler20,21, John D. Kingston1

Living hominoids are distinguished by upright torsos and versatile locomotion. It is hypothesized that
these features evolved for feeding on fruit from terminal branches in forests. To investigate the
evolutionary context of hominoid adaptive origins, we analyzed multiple paleoenvironmental proxies
in conjunction with hominoid fossils from the Moroto II site in Uganda. The data indicate seasonally
dry woodlands with the earliest evidence of abundant C4 grasses in Africa based on a confirmed age of
21 million years ago (Ma). We demonstrate that the leaf-eating hominoid Morotopithecus consumed
water-stressed vegetation, and postcrania from the site indicate ape-like locomotor adaptations. These
findings suggest that the origin of hominoid locomotor versatility is associated with foraging on leaves in
heterogeneous, open woodlands rather than forests.

L
iving nonhuman hominoids are distin-
guished from most other primates by
postcranial adaptations that facilitate
arboreal positional behaviors in which
the torso is upright (orthograde) and the

fore- and hindlimbs often have wide excur-
sions and are oriented in different directions.
Most hypotheses seeking to explain the adapt-

ive significance of these versatile behaviors
propose that they help medium- and large-
bodied primates forage for ripe fruit in the ter-
minal branches or the upper canopy of forests,
where small, flexible branches must be navi-
gated [e.g., (1–4)]. Such terminal branch forest
frugivory hypotheses predict that versatile posi-
tional behaviors (including both postures and
locomotion) would have first appeared in hom-
inoids that were committed frugivores and
were foraging in tropical forest habitats.
TheMoroto II Miocene fossil site in Uganda

(Fig. 1) provides a unique opportunity to test
these predictions because it documents the
oldest well-established paleontological record
of hominoid teeth and postcranial bones from
a single locality. Here, we report on new ra-
diometric dates, data on fossil hominoid diet
and locomotion, and multiple paleoecological
proxies from Moroto II that allow us to elu-
cidate the evolutionary context and refine the
nature and timing of key aspects of early hom-
inoid adaptive origins.

Background
Terminal branch forest frugivory hypotheses

Hominoid arboreal positional behavior is par-
ticularly versatile because it involves transi-
tions among a range of postural and locomotor
modes and across a range of substrates. This
versatile behavior fundamentally stems from
having a dorsostable, orthograde torso, which
in turn facilitates differential limb use and the
ability to have limbs aligned differently while
serving a weight-bearing function. Although
this use of the term “versatile” is not estab-
lished in the literature, which has an accepted
positional behavioral terminology that that both

consolidates and simplifies nomenclature (4–7),
we use it as shorthand to refer to behaviors
such as vertical climbing on substrates oriented
≥45°, arboreal travel during which multiple
limbs are propulsive but oriented differently,
andsuspension (below-branchbehaviors) (movies
S1 to S3). Versatile behavior thus represents
an alternative to quadrupedalism, in which
the torso is roughly horizontal (pronograde),
limbs are generally below the body, and joint
excursions are more modest (4). Versatile be-
haviors are thought to be especially impor-
tant when moving in the trees with a large
body size and have been linked to hominoid-
specific anatomical specializations, includ-
ing dorsoventrally shallow but mediolaterally
broad torsos; dorsally placed scapulae; rela-
tively short, dorsostable lumbar regions; rela-
tively long forelimbs paired with relatively
short hindlimbs; mobile limb joints; manual
and pedal specializations for grasping; and tail
loss (8, 9).
In attempting to explain the evolutionary

origins of the unique hominoid body plan, re-
searchers have focused on particular versatile
behaviors, including suspension (10, 11), qua-
drumanous climbing (12), and vertical climb-
ing (13, 14), all of which normally incorporate
the use of limbs outside of the parasagittal
plane. These capabilities also rely on an up-
right, stable torso, so it has been further sug-
gested that it is the capacity for orthogrady
thatmay be largely responsible for hominoid
positional behavioral distinctiveness (6, 15).
Several influential hypotheses have been

advanced to explain the adaptive significance
of the acquisition of versatile positional be-
haviors in hominoids and are here grouped
under a single umbrella as the terminal branch
forest frugivory hypotheses. The earlier forms
of these hypotheses focused on substrate. It
was proposed that versatile behaviors contrib-
ute to the fitness of medium- and large-bodied
apes by allowing them to use multiple sup-
ports to distribute their weight and thereby
successfully forage either in the terminal
branches generally or in themiddle and upper
canopy of forests [e.g., (1, 2, 16, 17)]. Enhanced
competition with cercopithecoidmonkeys and/or
increasing seasonality were invoked (2, 10, 18)
to explain the increase in body size. Suchmodels
of hominoid-cercopithecoid divergence also
typically situate cercopithecoids in more open
habitats [e.g., (3, 18, 19)].
Forests figure prominently in these models

of hominoid divergence. They are generally
defined as distinct from woodlands in having
greater structural complexity and taxonomic
richness, usually including taller trees with
multistoried, intermingling crowns, with the
highest level of foliage (the canopy) more
closed (20, 21). By contrast, woodlands in
tropical and subtropical Africa tend to have a
single-story broken canopy, extensive ground
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cover including grasses, and distinctive dry-
wet seasons. Consequently, forests have greater
connectivity between adjacent trees, as well as
more shade and moisture. Ripley (18) pro-
posed that terminal branch feeding on fruit
would have occurred in evergreen forests.
Temerin andCant (3) also postulated that hom-
inoid divergence occurred within a forest en-
vironment. These primatologists, along with
paleontologists [e.g., (19)], speculated that the

development of nonforested habitats occurred
in the Middle Miocene (~15 Ma), with ancestral
cercopithecoids exploiting the woodlands or
savannas and hominoids remaining in tropical
forests (19, 22).
Frugivory was emphasized in most detail by

Temerin and Cant’s (3) insightful model of
hominoid origins, which held that versatility
evolved to increase speed and decrease the
path length of arboreal travel in forest habitats

under conditions of decreased fruit availabil-
ity. These authors postulated that suspension-
and forelimb-dominated climbing allowed apes
to outcompete monkeys (as well as arboreal
squirrels, bats, and birds) for rare, small, and/or
dispersed high-quality fruit patches, whereas
monkeys, which are restricted to longer, above-
branch pathways and must frequently return
to the core of a tree, exploited abundant ripe
and nonripe fruit and leaves. Temerin and Cant
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Fig. 1. Location maps and cross sections of the Moroto region. (A) Regional
map of the Uganda-Kenya rift system depicting major Early Miocene fossil site
complexes (in red). (B) Inset of current Moroto volcanic edifice and environs,
including the location of Moroto II at Kogole and Moroto I at Loitakero (volcanics

are shown in pink and the metamorphic basement in white). (C) Topographic
cross-sectional profile [depicted in (B)] showing the intersection with the hills of
Loitakero, Kogole, and Nero overlying the fossil sites (in blue). Locations of 40Ar/39Ar
dating samples from lavas capping three topographic highs are shown.
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(3) proposed that a reduction in fruit availa-
bility, driven by a cooler and drier climate, was
the selection pressure leading to the ecological
divergence of hominoids and cercopithecoids.
A more recent synthesis by Hunt (4) also in-
voked competition with cercopithecoids, in
which small size, bilophodonty, and greater
tolerance for the chemical defenses of plants
allowed them to more successfully exploit un-
ripe or small patches of fruit and leaves in the
center of tree crowns. Apes, in turn, evolved
postcranial specializations to feed on fruit in
the terminal branches (4).
Althoughmost reconstructions of hominoid

foraging ecology focus on fruit, Sarmiento (23)
proposed that the slow movements found in
larger forms of select mammals, including
hominoids, lorisines, colobines, the fossil lemur
Paleopropithecus, and sloths, are correlated
with folivory, although no causal links to an
ecological context were proposed. The impor-
tance of terminal branch resources has been
strengthened by research documenting that at
least some fruits are larger, more abundant,
denser, and most nutritionally valuable in the
upper canopy (24); and leaves in the upper
canopy may have higher protein (25), with
young leaves having relatively higher protein
than mature leaves (26). The higher quality
and/or quantity of food in the upper canopies
is thus a potential driver of versatile positional
behaviors among hominoids.
There remains a prevailing and persistent

perception that early hominoid evolution
played out in a forested context and that
frugivory was an important component. This
relates to a number of long-held observations
and interpretations, including: (i) all modern
hominoids (and several fossil taxa) exhibit
and are defined by arboreal adaptations for
which behavioral versatility (as we define it)
is key; (ii) the preferred habitats of modern
hominoids are forests, so forest dwelling could
be construed as a synapomorphy of the hom-
inoid clade; (iii) the preferred diet of modern
hominoids is largely focused on fruit; and (iv)
the Early Miocene is viewed as consisting of
a pan-equatorial African forest [see (27), which
presents an expansive, regional interpretation
of the vegetation of the Early Miocene]. The
terminal branch forest frugivory hypotheses
represent a formal distillation of these con-
cepts, and we invoke them as representative
of broad perceptions that persist today.

The Moroto II locality

As described by Bishop andWhyte (28), fossils
in Moroto District were first found just north
of Moroto Mountain (Moroto I) in 1959 by
J. G. Wilson. The site of Moroto II was subse-
quently discovered in 1962 (28). The sites were
prospected by Bishop and colleagues between
1961 and 1965 (28–30), resulting in theWilliam
Bishop fossil collection. Ongoing research at

Moroto II by our team has produced fossil col-
lections from the years 1994 to 2017.
Initial K/Ar dates for the capping basaltic

lavas at the fossil sites in the 1960s yielded
ages of 12.5 and 14.3 Ma (31), but more re-
cent 40Ar/39Ar incremental dating techniques
resulted in an age of 20 to 20.6 Ma (32). Al-
though this date has been questioned and an
age of 17.5 Ma advocated on the basis of qua-
litative biostratigraphic interpretations (33–35),
the more comprehensive geochronologic strat-
egy described below unequivocally supports an
age of 21 Ma for the Moroto fossil localities.

The hominoids of Moroto II

Morotopithecus bishopi is one of at least two
large-bodied primates from the Early Miocene
fossil site of Moroto II in Uganda (32, 36). Its
status as one of the oldest fossil hominoids,
coupled with derived postcranial traits, includ-
ing a dorsostable lower back, has placed it in a
unique position among its Miocene contem-
poraries (37–39), because other Early Miocene
(e.g., Proconsul and Ekembo) and even Middle
Miocene (e.g., Equatorius and Kenyapithecus)
African taxa retain ancestral, monkey-like body
plans (37–39). Although the distinctiveness
ofM. bishopi from Afropithecus turkanensis
(40,41) and thecompositionof theMorotopithecus
hypodigm (42, 43) have been questioned, re-
cent (36) and current analyses support our
assignments of functionally informative den-
tal and postcranial specimens recovered at
Moroto II to Morotopithecus.
The distinctiveness of the holotype maxilla

andpartial faceUMP62-11 describedbyAllbrook
and Bishop (29), as well as the fragmentary
mandibular remainsUMP62-10 andUMP66-01
described by Pilbeam (44), were recently reas-
sessed by MacLatchy et al. (36) after the dis-
covery of another partialmandible (UMPMORII
03'551) and an isolated Proconsul-like tooth
(UMP MORII 03′559) at Moroto II. Compar-
isons of taxonomically, developmentally, and
functionally diagnostic characteristics, includ-
ing tooth crown morphology and tooth row
proportions, relative enamel thickness, enamel-
dentine junction morphology, long-period line
periodicity, and dental wear patterns, clearly dis-
criminate among Afropithecus, Morotopithecus,
and theProconsul clade and support genus-level
distinctiveness for all three (36). In addition, it
was concluded, given the similarity in the tooth
row proportions between the holotype UMP
62-11 and the mandible UMP MORII 03'551
and the complementary morphology between
mandiblesMORII 03'551,UMP 66-01, andUMP
62-10 (including having a long tooth row and
vertical planum alveolare), that all of these spe-
cimens were best assigned toM. bishopi (36).
The functional assessments of these dental

specimens provide evidence for specialized leaf
eating (36) rather than the more generalized
fruit-based diet reconstructed for primitive

catarrhines (45, 46). Both the upper and lower
molars are mesiodistally elongated, and an
unworn M2 has conspicuous, well-developed
shearing crests (36), a characteristic long ac-
cepted as being reflective of folivory (45, 46).
The presence of features for specialized leaf
eating in both the upper and lower dentition
further supports the attribution of all of these
specimens to Morotopithecus (36). Although
incipient signals of folivory have been docu-
mented in some smaller-bodied EarlyMiocene
catarrhines (45), this combination of features
was previously unknown for any great ape–
sized (>30 kg) catarrhine before the Late Mio-
cene. A folivorous diet is corroborated by thin
occlusal enamel (23, 36), which, although not
necessarily diagnostic for leaf eating, rules out
the hard-object feeding inferred for other fos-
sil taxa, including Afropithecus (47).
Two hominoid postcranial remains from

Moroto II attributed to M. bishopi represent
the oldest clear evidence of derived locomotor
adaptations in hominoids: a lumbar vertebra
[UMP 67-28; originally described by Walker
and Rose (48)] indicative of a dorsoventrally
stable lumbar spine consistentwith orthogrady
(37, 49, 50) and associated partial femora [UMP
MORII 94′80; first described by Gebo et al.
(32)] reflective of vertical climbing and slow
forms of orthograde or pronograde clamber
(15, 50, 51). These are core derived behaviors
of the hominoid clade emphasized in the ter-
minal branch forest frugivory hypotheses. The
right femur is now complete and new func-
tional implications are described below.
The precise locationwithinMoroto II where

the hominoid vertebra UMP 67-28 and some
dental remains (UMP 66-01, UMP 62-10, and
the holotypeUMP 62-11) were found ~50 years
ago is not documented, so there will always
be ambiguity about their association. However,
themandible bearing the lightly wornM2with
well-developed shearing crests (UMPMORII
03′551) and the right and left femora (UMP
MORII 94′80) were found by our team within
a single stratigraphic level (Fig. 2A) (36) from a
restricted spatial distribution (see geologic
setting below) and are the only hominoid fos-
sils known from this level. As noted above, we
believe that the holotype UMP 62-11 and man-
dible UMP MORII 03′551 belong in the same
taxon because of their complementary mor-
phology and specialized features for folivory.
Likewise, the vertebra UMP 67-28 and the fe-
mora UMP MORII 94′80 share adaptive char-
acteristics (see below). The co-occurrence of
hominoid folivory and ape-like climbing abil-
ities (regardless of taxonomic attribution) at a
single, constrained stratigraphic level counters
the predictions of the terminal branch forest
frugivory hypotheses and makes reconstruct-
ing the environment and age ofMoroto II highly
relevant for developing adaptive explanations
for the early stages of the hominoid lineage.
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Results
Geologic and taphonomic setting
Fossiliferous sediments exposed at the site of
Moroto II represent a fluvial system with dep-
osition in a deeply incised channel eroded
directly in the underlying Precambrian meta-
morphic basement complex and are directly
overlain by a basaltic lava sequence. Deposits
exposed at Moroto II consist almost exclusive-
ly of fluvial facies with minor fine-grained la-
custrine or ponding facies, perhaps within the
paleochannel(s) or floodplains. Sediments have
been overprinted by pedogenic processes to
varying degrees, suggesting that the channel
and associated floodplainswere intermittently
inactive or meandered laterally. The site is cur-
rently ~11 km north of Mount Moroto, a vol-
canic complex that formed along the tectonically
activewestmargin of the eastern branch of the
East African Rift System during the Early
Miocene, in conjunction with a series of eruptive
centers extending north to the Turkana Basin
and south into western Kenya (Fig. 1A). A lack

of volcanoclastic debris in the sedimentary se-
quence indicates deposition on the basement
complex that was independent of any input
from the Moroto volcano. These observations
suggest that although the site was formed ad-
jacent to a developing eruptive center, the fos-
sil assemblage more likely sampled ecosystems
associated with the basement peneplain rather
than the flanks of a volcano.
Fossils were recovered from multiple fluvial

channels in fine- to coarse-grained sediments.
Occasionally, elements frommultiple taxa have
been recovered together in small pockets with-
in floodplain or overbank deposits, but most of
the specimens derive mainly from two concen-
trations within the succession (Fig. 2A). The
spatial proximity of the specimens recovered
at each of these two stratigraphic levels (con-
fined to an ~10 × 10 m area) indicates that
fossils are generally associated. Taphonomic
analysis (52) indicates that fossil assemblages
likely represent time-averaged streamside ac-
cumulations in an open environment without

a dominant biogenic accumulating process.
Weathering patterns reveal that remains were
often exposed to sunlight or frequent wetting
and drying, which may suggest a more open
environment (53). Attritional death assemb-
lages such as Moroto II may be faithful indi-
cators of broader ancient living assemblages
(54, 55), with the exception of small taxa that
are underrepresented in our collections.

Chronology

The basaltic sequence overlying the fossilifer-
ous sediments represents the initial input of
volcanic material in the vicinity of the fossil
localities. This overlying lava flow is in direct
superposition with a paleosol surface in the
Moroto II succession, indicating relatively
rapid emplacement of the lavas within and
over the active channel system without a pro-
tracted temporal hiatus (Figs. 1C and 2A).
There are currently a number of topographic
highs immediately northwest of the main
Moroto volcanic edifice capped by erosional
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remnants of the same sequence of lavas (Fig. 1C).
Ten basalt samples were dated by 40Ar/39Ar
laser incremental heating [Fig. 1C, figs. S1 to
S3, and tables S1 to S3 (52)] from outcrops at
multiple levels within the lava sequence at
Moroto II (Kogole Hill and the nearby hills
of Loitakero, which overlies the Moroto I fos-
sil site) and Nero (52) (Fig. 1 and figs. S1 to
S3). Ages are consistent within error, yielding
a mean of 20.950 ± 0.046 Ma, corroborating
previous radiometric ages of 20.6 Ma for the
Loitakero basalt and ~20 Ma for the Kogole
basalt (32).
On the basis of the reversed polarity of all

samples at Moroto II, coupled with a repre-
sentative age for the Moroto capping lavas of
20.950 ± 0.046 Ma and the stratigraphic rela-
tionship of the lava flows to the Moroto II
sediments, our preferred correlation to the
Geomagnetic Polarity Time Scale (GPTS) is to
C6Ar, which occurred from 21.204 to 21.130Ma
(± 0.037 Ma) (56). Given that all samples are
reversed, if the section sampled the entire chron,
then the maximum duration of deposition of
Moroto II was 365 ± 36.9 thousand years. On
the basis of the sedimentological and paleosol
features of the deposits, the site was likely
deposited over a much shorter duration (52)
(figs. S4 and S5 and tables S4 and S5).
This geochronology is entirely consistent

with biostratigraphic data from the mamma-
lian assemblage at Moroto II. There is a long
sequence of Early Miocene fossil sites in Uganda
and western Kenya that document faunal
change in eastern Africa [e.g., (57, 58]. A major
aspect of this faunal change is the gradual
transition from the afrotherian-dominated as-
semblages characteristic of the Paleogene to as-
semblages that are dominated by laurasiatherian
immigrants by the onset of the Middle Mio-
cene. Our detailed comparisons of the iden-
tifiable mammal fossils (n = 146) (table S6)
provide strong support for the radiometric
date, because some common laurasiatherian
taxa are completely absent. By 20 Ma, and
documented at sites such as Songhor and
Rusinga, eastern African faunas incorporate
additional laurasiatherian immigrants such as
suids, tragulids, or perissodactyls and additional
rodent lineages [e.g., (57, 59–61)]. By contrast,
at Moroto II, there are no suids or tragulids,
no perissodactyls, and hyracoids are relatively
abundant (table S6), suggesting that this as-
semblage is older than 20 Ma.
The radiometric age is further supported

by the proboscideans, which are the best-
knownmammals in theMoroto II assemblage.
Eozygodon, in particular, has a limited strati-
graphic range in Africa and is only known from
sites~20 to 19Maandolder (62). In easternAfrica,
Eozygodon is only foundatMoroto II andMeswa
Bridge [22.5 Ma (63)]. The Moroto II material
displays more derived dental features (table
S6), supporting a biostratigraphic framework in

whichMeswa Bridge is older thanMoroto. In
addition, at younger sites in eastern Africa, such
as Rusinga,Eozygodon is replaced by themore de-
rivedZygolophodon, and a secondproboscidean
genus at Moroto II, Progomphotherium, is
succeeded by Archaeobelodon (62). Therefore,
these two proboscidean taxa also support an
age of >20 Ma. Overall, biostratigraphy pro-
vides strong support that Moroto II is older
than the well-sampled ~20 Ma site complexes
of Napak and Tinderet, but younger than the
~28- to 23Ma Late Oligocene faunas from east-
ern Africa (62).

Hominoid and other catarrhine fossils
Femur

New catarrhine fossils fromMoroto II include
additional fragments of the right femur UMP
MORII 94′80 attributed to Morotopithecus
(32, 50), which complete the previously partial
shaft for a total length of 240.7 mm (data S1).
Very few complete femora from large-bodied
Miocene hominoids exist. Relative to the mid-
shaft, femoral head, and bicondylar breadths,
UMP MORII 94′80 is very short (52) (Fig. 3),
like the femora of extant great apes and unlike
those of large cercopithecoids and the large-
bodied Miocene hominoid Ekembo nyanzae
(51), which is considered to be a generalized
pronograde quadruped (38) (Figs. 3 and 4A).
The cortical bone of UMP MORII 94′80 is
thick, as in living great apes (50, 51), with a
ratio of cortical area divided by subperiosteal
area (CA/PA) of 0.83 at about midshaft (52)
(fig. S6). This is greater than the CA/PA ratio of
the Early Miocene ape Ekembo heseloni [0.67
for KNM-RU 2036 (50)]. Both CA (282 mm2)
and strength (J) (18117.49 mm4) at about mid-
shaft are high relative to shaft length (fig. S7)
and resemble proportions found in Pongo (52).
This heavy reinforcement of cortical bone in
Pongo has been interpreted to reflect an em-
phasis on axial loading, andmay be associated
with static postures (64) and slow movement
with prolongedmuscular recruitment (50). The
finding that the hominoid represented by
UMP MORII 94′80 had very short but strong
legs is also consistent with the biomechanical
expectation for large-bodied vertical climbers, in
which the ability to remain on vertical supports
(especially large ones) requires differentiated
limb use involving (i) sustained muscular con-
tractions, (ii) leaning away from the substrate
using relatively long forelimbs, and (iii) having
relatively short hindlimbs that flex at the hip
and knee (65) (Fig. 4B). In combination, the
short legs and large body size ofMorotopithecus
also suggest that its vertical climbing kinematics
may have been more similar to those of great
apes than to those of hylobatids. Isler (14) has
shown that compared with the smaller gib-
bons (who have longer hindlimbs for their
body size; Fig. 3), great apes position the body
closer to the substrate, climbmore slowly, and

use shorter strides with amore extended thigh
and abducted hip.
As noted previously (50), UMPMORII 94′80

has a broad bicondylar breadth; a well-developed
popliteal groove; a wide, shallow patella groove;
and a medial condyle that is broader than the
lateral condyle (50). These features are corre-
lated with ape-like capacities in the knee for
rotation and hindlimb abduction (50, 66, 67).
Proximally, the femoral head is somewhat small
compared with extant hominoids, as reflected
in the smaller body mass estimates that were
calculated by Ruff (51) on the basis of femoral
headbreadth (29.5 kg) versus bicondylar breadth
(37.3 kg) using a combined catarrhine sample.
However, the relative femoral head surface
area falls between those of African apes and
monkeys, implying at least moderate hip mo-
bility, and is broadly consistent with locomo-
tion that included vertical climbing and with
locomotor inferences stemming from the fe-
moral shaft and distal femur (68).

Vertebra

Lumbar vertebra UMP 67-28 from Moroto II
shares anatomical features with hominoids that
are absent in cercopithecoidmonkeys (37,48,49).
For example, transverse processes arise from
the base of robust pedicles and are oriented
dorsally (49), increasing the moment arm of
the muscles iliocostalis and longissimus dorsi
to resist ventroflexion (69). Also, the vertebra
lacks anapophyses (tailed catarrhines have an-
apophyses as insertions for caudal vertebral
extensors), has reduced ventral keeling, and
exhibits a caudally inclined spinous process
(which is associated with reduced dorsoven-
tral mobility) (37, 49). New cleaning and pre-
paration of this vertebra in 2016 revealed the
presence of salient ligamentous pits medial to
the postzygapophyses; these had been filled
with sediment and had not previously been
obvious (data S2). The pits represent inser-
tions for the ligamentum flavum, interverte-
bral ligaments positioned between laminae of
adjacent vertebrae in mammals. Their primary
function in the lumbar column is to limit ven-
troflexion and stabilize lumbar vertebrae on
one another. The depth of these ligamentous
pits in UMP 67-28 suggests ligaments of sub-
stantial strength.With the featuresmentioned
above, these ligaments can be interpreted to
help maintain orthogrady and lumbar stabil-
ity, as opposed to increasing spinal mobility.
These features differ from those found in the
lumbar vertebrae of Ekembo, which were in-
terpreted as being associated with monkey-like
flexion and extension of the spine during quad-
rupedal locomotion (37).

Dental specimens

In addition to Morotopithecus, at least three
smaller, non-cercopithecoid catarrhine taxa are
represented in the 1994–2017 fossils collected
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by our team (table S6): a proconsulid (UMP
MORII 03′559), aff. Rangwapithecus (UMP
MOR II 11′1938; figs. S8 and S9 and table S7),
and a small-bodied non-cercopithecoid catar-
rhine (UMPMORII 02′352) that is represented
only by a lower canine that does not fit in the
hypodigm of any known small catarrhine genus
(fig. S10).
The lower third molar (UMPMOR II 11′1938)

attributable to aff. Rangwapithecus is the
first record of the genus outside of Kenya,
and the oldest. We describe it in brief because
Rangwapithecushas verywell developed shear-
ing crests compared with other Early Miocene
catarrhines (45) and microwear denotive of
folivory (46), indicating that another, smaller
catarrhine with this dietary specialization was
present at Moroto II. The specimen compares
favorably to R. gordoni from Songhor and
shares with it several traits, including a large
and elongate crown, peripherally positioned
conical cusps linked by rounded crests, and
delicate secondary enamel crenulations (42, 70).
However, there are some features suggesting
that it is more primitive and/or unique, in-
cluding a narrower mesial buccal notch and
less discrete buccal cusp outlines. Traits such
as the well-developed mesostylid and lack of a
crest between the hypoconulid and entoconid
are reminiscent of traits found in the older
nyanzapithecine from the Late Oligocene,
Rukwapithecus (71). On balance, we find the spe-
cimen tohave strong affinities toRangwapithecus,
with the differences likely reflecting the an-
cestral nyanzapithecine condition,which is com-
patible with its greater antiquity.

Stable isotopes of enamel

Dietary carbon isotopic signatures of molars
fromMorotopithecus, aff. Rangwapithecus, and
the proconsulid reveal that all three taxa had
13C-enriched diets relative to modern hom-
inoids (Fig. 5B and table S8), indicating diet-
ary niches and habitat preferences distinct
from those of living apes (52). Specifically,
the carbon isotopic signals of the enamel
(d13Cenamel) of the Moroto hominoids are con-
sistent with water-stressed C3 dietary vege-
tation, encroaching on the isotopic range of
modern catarrhines that forage in more open
habitats, such as Papio or some of the earliest
hominins (Fig. 5B). Although the d18Oenamel

value of Morotopithecus is within the isotopic
range of associated large-bodied terrestrial fossil
herbivores at Moroto II (e.g., proboscideans
and anthracotheres), it is 18O enriched relative
to the other catarrhines (figs. S11B and S12 and
table S8). As a taxon with derived orthograde
and climbing capabilities, this suggests that
Morotopithecus may have (despite its large
size) more easily foraged in peripheral or
higher parts of the canopy, where evapotrans-
piration and irradiance were higher and
vegetation was more water stressed (72).
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Paleoecology
Paleoecological reconstructions of fossil catar-
rhine and hominoid sites in eastern Africa have
suggested a primitive phyloecological context
for hominoid origins characterized by a com-
plex canopy structure(s) associated with for-
ested habitats [e.g., (73–76)]. However, evidence
and interpretations from fossil sites in eastern
Africa have also yielded empirical data impli-
cating more heterogeneous habitats that in-
clude woodland and even wooded grassland
components [e.g., (27, 77, 78)]. Overall, the
fossil record leading up to the Early Miocene
in eastern Africa has revealed variable ecosys-
tems, although the general distribution and
relevance of any particular habitat(s) for hom-
inoid evolution remains unknown. Given this
difficulty, it is important to situate the evo-
lution of hominoids and their vertebrate com-
munities specifically within local and regional
paleoecological frameworks.
To assess the paleoecological context of the

Moroto II fossil assemblage, several independ-
ent approaches were used, including (i) isoto-
pic dietary ecology of fossil herbivore guilds;
(ii) biogeochemical analyses of paleosol bulk
organics, n-alkanes, and pedogenic carbonate;
(iii) elemental characterization of paleosols to

estimate mean annual precipitation (MAP); and
(iv) analyses of phytolith assemblages. These
approaches provide a composite perspective on
the physiognomy and physiology of the vege-
tation but also reflect climatic factors such as
seasonality and precipitation. Cumulatively,
these data have relevance for constraining as-
pects of the canopy architecture and resource
distribution that are critical for determining
the adaptive significance of early hominoid lo-
comotor and foraging behaviors.

Stable carbon isotopes of fossil enamel

Isotopic paleodietary ecology has figured pro-
minently in discussions of the evolution of
eastern African terrestrial communities, par-
ticularly in using d13C proxies to establish the
relative significance of C4 grasses in past eco-
systems [e.g., (79, 80)]. However, d13Cenamel

datasets are comparatively rare from sites
older than ~9Ma. This is in part because Early
and Middle Miocene sites were presumed
to predate significant C4 biomass in eastern
Africa. Thus, enamel samples were not ana-
lyzed because the paleoecological reconstruc-
tive potential of isotopes based only on C3 plant
variation is limited. This study provides one of
the first applications of this technique to the

EarlyMiocene of eastern Africa, thereby filling
a crucial data gap.
The application of enamel isotopic analyses

for differentiating dietary guilds within C3-
dominated biomes or among C3 browsers and
grazers currently remains coarse. Although
there is no strict relationship between canopy
cover or architecture and d13Cenamel values,
general trends related to water stress, irra-
diance, and canopy density have been estab-
lished [e.g., (81, 82)], providing guidelines for
reconstructing general aspects of past land-
scapes and habitats. A framework generated
for interpreting the isotopic signatures of fos-
sil enamel atMoroto II [Fig. 5 (52)] is based on
analysis of a compilation of d13C values of mod-
ern and fossil vegetation and herbivore enamel
in both C3-dominated habitats and mixed C3/
C4 ecosystems.
d13Cenamel values of fossil enamel from 25

fossil herbivores atMoroto II, representing nine
genera from seven families, range from –6.8‰
to –15.3‰, with ~85% of the values falling be-
tween –12‰ and –8‰ (Fig. 5B and table S8).
This dietary range is most consistent with for-
aging in mesic to arid woodland ecosystems,
as depicted in Fig. 5, with limited evidence of
closed canopy forest or open woodland and
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Fig. 4. Catarrhine femora. (A) Catarrhine femora, anterior view. The Pliocene
cercopithecoid Paracolobus [mass ~36 kg based on regressions in (51)] and
Papio [male mass ~25 kg (103)] have proportionately longer shafts than
extant hominoids. Ekembo (~36 kg) and Morotopithecus (~35 kg) have similar
femoral midshaft and joint dimensions and inferred body sizes (51), but the
Morotopithecus femur is shorter. Turkanapithecus [~10 kg based on regressions
in (51)] is Early Miocene in age and is the size of extant Symphalangus
[~12 kg (51)]. The larger fossil taxa are about the same size as female Pongo
[mass ~36 kg (103)], but smaller than female Pan [mass ~46 kg (103)].

Pan, Pongo, and Morotopithecus have shorter femora for their size than do
cercopithecoids and Ekembo. The top red arrow adjacent to the Morotopithecus
femur denotes where cortical bone was exposed and analyzed (50) when
this fragment was hypothesized to be midshaft. The bottom arrow indicates
the break exposing the cortical bone analyzed in this study, with its cross
section pictured above. (B) Short femora and hindlimbs are biomechanically
advantageous for vertical climbing. Shown are Jackson (adult male, top) and
Sarah (adult female), chimpanzees from Kibale Forest in Uganda, vertically
climbing a liana.

RESEARCH | RESEARCH ARTICLE
D

ow
nloaded from

 https://w
w

w
.science.org at C

olum
bia U

niversity on A
pril 13, 2023



savanna microhabitats. The more positive diet-
ary values (~>–9‰) indicate feeding on 13C-
enriched C3 vegetation (typically associated
withwater-stressedmodern habitats) and pos-
sibly including minor C4 (or CAM) dietary
components (i.e., largely arid-adapted grasses
and/or succulents in the tropics). The Moroto
II isotopic fossil dietary range differs from
modern herbivores feeding in tropical forest
and woodland and grassland ecosystems in
equatorial Africa (Fig. 5A), with no clear mod-
ern analogs yet established isotopically. Iso-
topic variation of fossil herbivores atMoroto II
is also distinguished from the more closed,
forested profile established for theMiddleMio-
cene fossil site of Fort Ternan (Fig. 5A).

Paleosol carbon isotopes

Multiple environmental indicators were also
assessed on the basis of analyses of paleosols
throughout the sequence (52), including the

interval associated with the Morotopithecus
mandible and femora (Fig. 2A). These indica-
tors are biogeochemical proxies, primarily re-
flecting local relative proportions of C3 and C4
vegetation. The carbon isotope values of bulk
organic matter (d13COM; n = 16) from Moroto
II range from –29.9‰ to –20.1‰ [relative to
the Vienna PeeDee Belemnite (VPDB)] (Fig.
2C), and pedogenic carbonate values (d13CPC;
n = 6) range from –7.7‰ to –2.5‰ (VPDB)
(Fig. 2E). Although some paleosol samples at
Moroto II are consistent with entirely C3 veg-
etation, paleosols stratigraphically adjacent
to the Morotopithecus fossil–bearing interval
had the largest proportion of reconstructed
C4 vegetation, with up to 59% C4 [95% con-
fidence interval (CI) = 29 to 83%; d13CPC =
–2.5‰] based on micritic pedogenic carbo-
nates and up to 45% (95% CI = 13 to 64%;
d13COM = –20.1‰) based on paleosol organic
matter (Fig. 2C and tables S9 and S10). Overall,

the d13CPC and d13COM datasets suggest that C3
vegetation was interspersed with either water-
stressed C3 plants or C4 grasses throughout the
stratigraphic succession.

Paleosol n-alkanes

n-Alkanes are plant leaf wax–derived biomark-
ers found in paleosols that can be used to re-
construct vegetation. Biomarker concentrations
and molecular distributions indicate excellent
preservation of n-alkanes in the Moroto II
paleosols and support the interpretation that
isotope data reflect the Early Miocene plant
community (table S11). The carbon isotope
values of C31n-alkanes range from –31.4‰ to
–22.7‰ (Fig. 2D), which represent a range of
C3- to C4-dominated ecosystems, respectively.
Carbon isotope values from other plant-derived
n-alkanes are presented in table S12. The d13C
values of the C35n-alkanes for three samples
range from –24.1‰ to –20.7‰, which indicate
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Fig. 5. Dietary d13Cenamel values from modern and fossil ecosystems and taxa.
(A) An isotopic ecological framework (52) relating foraging strategy to habitat
type applied to d13Cenamel dietary signatures from a range of herbivores collected from
three modern ecosystems in equatorial Africa (79, 104, 105). Isotopic dietary ranges
of fossil herbivores analyzed from Fort Ternan (106) and the Moroto sites I and II
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(B) Comparative isotopic dietary signals of fossil hominins (107, 108), three Moroto
hominoids (this study), and extant catarrhines used to constrain foraging habitats.
Modern catarrhine values include gorillas [(109); this study, n = 21], chimpanzees
[(110) and references therein; this study, n = 3)], orangutans (this study, n = 13), gibbons
(this study, n = 27), and baboons (109). *, Data from this study; */, data from this
study and previous research; all other data are from previous studies.
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high abundances of C4 vegetation on the land-
scape. The C35 homolog has been shown to be
a highly sensitive indicator of C4 vegetation in
other Miocene samples from Africa (83, 84)
and from the Siwalik sequence in Pakistan
and India (85). Several studies have shown
that C4 grasses, especially from Africa, pro-
duce much higher abundances of long-chain
n-alkanes (i.e., C33 and C35) than do C3 plants
(86, 87). Samples with d13C values associated
with C4 vegetation from Moroto II also have
relatively high concentrations of C33 and C35

homologs and together provide compelling iso-
topic and molecular evidence for C4 grasses at
Moroto II.
Seven samples from Moroto II have paired

carbon isotope data for both bulk organic mat-
ter and n-alkanes. The d13C values of bulk or-
ganic matter for these samples are strongly
and significantly correlatedwith the d13C values
of C31 alkanes (r = 0.98, P << 0.001) and C35
alkanes (r = 0.94, P= 0.002), corroborating the
reliability of the bulk organic carbon isotope
results. Only two sampling levels at Moroto II
included analyses of both pedogenic carbon-
ate and n-alkanes, because the sample sizes
from other levels were too small for meaning-
ful comparisons.

Paleosols and hydroclimate

Paleosols at Moroto II typically formed on the
finer-grained fluvial deposits and include gleyed
Vertisols, calcic and noncalcic Inceptisols, and
Alfisols (figs. S12 and S13). Qualitatively, these
features are consistent with a seasonally vary-
ing hydroclimate that requires water deficit
and surplus for Vertisol development and sea-
sonal dewatering for pedogenic carbonate for-
mation with a potential maximum MAP of
~1000 mm given the rarity of modern calcic
soils above this threshold (88). Paleo-MAPwas
estimated using three proxies that use the bulk
elemental composition of the uppermost sub-
soil (B) horizon as input data (52, 89). The
samples from the Moroto II sequence (Fig. 2F,
figs. S13 and S14, and tables S13 to S15) yielded
MAP values of 626 to 1313mm/year, indicative
of a subhumid paleoclimate within the range
of modern woodlands in Africa (90, 91). Fur-
ther, none of the results from Moroto II sup-
portsMAP values in excess of 1500 to 2000mm
regardless of wet season length or fire regime,
conditions that currently characterize closed
canopy forests in equatorial Africa [e.g., (91)].

Phytoliths

Phytoliths are microscopic silica bodies pre-
cipitated in living plant cells and cell walls that
remain in soils or sediments when plants die
and decay. Preserved phytolith assemblages
allow reconstruction of vegetation structure
and type on a relatively local scale, especially
in tropical and subtropical ecosystems (92–94).
The six variably preserved phytolith assemb-

lages from Moroto II confirm inferences from
isotopic data of habitat heterogeneity, either
spatially or temporally (52) (Fig. 2B and tables
S16 to S18). The best-preserved assemblage, sam-
pled from theMorotopithecus interval, is domi-
nated by grass phytoliths (63.1% of diagnostic
morphotypes) that are mainly from PACMAD
grasses (C3 or C4 taxa in the Panicoideae,
Arundinoideae, Chloridoideae, Micrairoideae,
Aristidoideae, or Danthonioideae subfami-
lies), and includes phytoliths of the arid-
adapted, C4 Chloridoideae PACMAD subfamily.
This assemblage also contains forest-indicator
phytoliths, including rare evidence of palms, in-
dicating spatial heterogeneity in the vegetation.
Compositionally, this assemblage has affinities
withmodernphytolith assemblages fromwooded
grasslands, but it is also consistent with open
forests containing a substantial grass under-
story (e.g., riparian forest in a savanna land-
scape, dry forest, or forest openings) (27).

Discussion
Context of the hominoid remains from Moroto

Moroto II records not only the earliest evi-
dence of clearly derived hominoid postcrania
and the first record of folivory for a large-
bodied hominoid, but also the oldest known
African ecosystemwith C4 grasses. Compilation
of lithostratigraphic, pedogenic, biogeochem-
ical, phytolith assemblage, and taphonomic
data fromMoroto II indicate a seasonal,mixed
C3/C4 environment with broken canopy forest
or woodland habitats. Evidence of water-
stressed C3 woodland–based diets for the
catarrhines and associated fauna, as well as
pedogenic proxies documenting a major C4

component, are congruent with habitats char-
acterized by a fragmentary canopy cover. These
reconstructions provide empirical evidence sup-
porting the concept that Early Miocene apes
may have been broadly associated with heter-
ogeneous, woodland habitats (27, 77).
These data call into question previous as-

sumptions regarding hominoid dietary and
locomotor coevolution because, in combina-
tion, they fail to support prevailing terminal
branch forest frugivory hypotheses that ortho-
grade locomotor versatility evolved to facilitate
feeding on fruit in a tropical forest. Instead,
the earliest known appearance of enhanced
orthogrady and shortened hindlimbs occurred
in a seasonal woodland and wooded grass-
land context, where soft, ripe fruit would be
periodically limited. Indeed, the morphology
of dental remains reveals that leaves were an
important component of the diet of at least
two Moroto hominoids,Morotopithecus (36)
and the nyanzapithecine aff. Rangwapithecus.
Positional behavioral versatility and its an-

atomical correlates may have evolvedmultiple
times in large-bodied catarrhines. There is no
evidence to indicate, for example, thatMoroto-
pithecus is closely related to the Eurasian taxa

Pierolapithecus (~12 Ma) or Hispanopithecus
(~10 Ma), the next-oldest hominoids inferred
to have had dorsostable lumbar spines (95, 96).
These hominoids have been associated with
forested environments (97, 98), but because
they are so much younger, their adaptive and
phylogenetic significance reflects more the
evolution of crown hominoids (i.e., that are
closely related to the living hominoids) (99)
than hominoid origins in Africa.
In the absence of additional fossils such as

hand bones, it is not possible to judge whether
suspension (10, 11), quadrumanous climbing
(12), and vertical climbing (13, 14) were more
or less associated with hominoid adaptive
origins (39). However, the record fromMoroto
II supports the hypothesis that orthogrady
is key to hominoid distinctiveness (6, 15) be-
cause it is among the first identifiable steps in
the evolution of anatomical features associ-
ated with the modern-type hominoid adapt-
ive niche.
Furthermore, in this first recorded instance,

locomotor and postural innovation seem to
have evolved in hominoids for effective arbo-
real feeding on leaves and fruit situated in
higher and/or peripheral aspects of tree crowns
in seasonal woodland habitats characterized by
gaps in the canopy. Such environments may
exert hitherto unrecognized selective pressures
on the evolution of arboreal apes, such as the
need, in times of seasonal low fruit availability,
to access young leaves with relatively high
protein (26) in the terminal or higher aspects
of the canopy. Although some breaks in the
canopy could be bridged through enhanced
climbing adaptations, larger gaps would have
necessitated repeated descent and ascent of
tree trunks and/or lianas, which is consistent
with the locomotor behavior indicated by the
femoral and vertebralmorphology of the hom-
inoid fossils of Moroto II.

Hominoid adaptive evolution in eastern Africa

Documenting the early stages of hominoid
evolution as the lineage diverged from other
catarrhines is critical for interpreting the
adaptive significance of traits that ultimately
define modern hominoids, including humans.
Although high catarrhine taxonomic and phyl-
ogenetic diversity in the Early Miocene have
been recognized for some time (42), a schema
is now emerging of high adaptive diversity
among these primates (100), as well as high
environmental variability (27, 73, 78), a per-
spective reinforced by reconstructions of hom-
inoid behavior and ecology atMoroto II. These
findings suggest that early hominoidmorphol-
ogies and environments do not match classic
ideas about the origins of the group, revealing
a complexity yet to be studied and understood.
The traditional paradigm for interpreting the
origin of the hominoid lineage has involved
forested habitats, but the data described herein
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reveal that in the Early Miocene, hominoid
adaptive diversity may have been influenced
by environmental heterogeneity (Fig. 6), as has
already been documented in the Late Miocene/
Pliocene and invoked in scenarios of hominin
origins (101, 102). This requires more careful
consideration of the nature of habitat het-
erogeneity in the past and a reevaluation of
how it may be linked to features (e.g., bipe-
dality and dental and foraging specializa-
tions) associated with early hominin expansion
into more openmicrohabitats within diverse
ecosystems.

Materials and methods summary

Material and methods for all techniques are
available in the supplementary materials. This
includes radiometric, paleomagnetic, and bio-
stratigraphic dating methods; morphological,
taphonomic, and faunal analyses; paleosol bio-
geochemical approaches (carbon isotopic anal-
ysis from both bulk organic and carbonate
samples, n-alkane analysis, and paleosol-based
hydroclimate analysis); and paleoecological an-
alyses including isotopic dietary paleoecology
and phytolith analyses.
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The evolution of hominoid locomotor versatility: Evidence from Moroto, a 21 Ma
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A new habitat for hominoid emergence?
The hominoid lineage underwent a major morphological change in the Miocene, acquiring strong hind legs and a more
upright posture. The prevailing hypothesis pertaining to these changes has been that they were adaptive for foraging
on fruit in the terminal branches of tropical forest trees. A pair of papers now argue that, instead, such changes may
have been driven by adaptation to feeding on leaves in seasonally dry and open forests. Peppe et al. used new
data from fossil mammal study sites and found that the expansion of grassy biomes dominated by grasses with the
C4 photosynthetic pathway in eastern Africa likely occurred more than 10 million years earlier than prior estimates.
MacLatchy et al. looked at fossils of the earliest ape in this region at this time, Morotopithecus, and found isotope
evidence of the consumption of water-stressed vegetation and postcranial morphology indicative of strong hind limbs
similar to modern apes. Together, these papers suggest that early hominoids emerged in a dryer and more irregular
environment than was previously believed. —BEL and SNV
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