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A large stable isotope dataset from East and Central Africa from
ca. 30 regional collection sites that range from forest to grassland
shows that most extant East and Central African large herbivore
taxa have diets dominated by C4 grazing or C3 browsing. Compar-
ison with the fossil record shows that faunal assemblages from ca.
4.1–2.35 Ma in the Turkana Basin had a greater diversity of C3–C4
mixed feeding taxa than is presently found in modern East and
Central African environments. In contrast, the period from 2.35 to
1.0 Ma hadmore C4-grazing taxa, especially nonruminant C4-grazing
taxa, than are found in modern environments in East and Central
Africa. Many nonbovid C4 grazers became extinct in Africa, notably
the suid Notochoerus, the hipparion equid Eurygnathohippus, the
giraffid Sivatherium, and the elephantid Elephas. Other important
nonruminant C4-grazing taxa switched to browsing, including suids
in the lineage Kolpochoerus-Hylochoerus and the elephant Loxodonta.
Many modern herbivore taxa in Africa have diets that differ signif-
icantly from their fossil relatives. Elephants and tragelaphin bovids
are two groups often used for paleoecological insight, yet their
fossil diets were very different from their modern closest relatives;
therefore, their taxonomic presence in a fossil assemblage does not
indicate they had a similar ecological function in the past as they do
at present. Overall, we find ecological assemblages of C3-browsing,
C3–C4-mixed feeding, and C4-grazing taxa in the Turkana Basin fossil
record that are different from any modern ecosystem in East or
Central Africa.
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The expansion of C4 biomass beginning in the late Miocene
marks a major vegetation change in the history of Earth.

Today C4 plants comprise ca. 50% of net primary productivity
(NPP) in the tropics (1) yet contributed less than 1% of NPP
only 10 million years ago. C4 plants are primarily grasses and
sedges, although C4 photosynthesis is known to be used in ∼20
plant families (2, 3). C4 photosynthesis is an adaptation to low
(ca. <500 ppm by volume) concentrations of CO2 in Earth’s
atmosphere along with high growing-season temperatures (4).
Although genetic evidence indicates an Oligocene origin of C4
photosynthesis in the grasses (5, 6), macrofossil evidence for C4
photosynthesis in grasses is extremely sparse (7, 8).
The expansion of C4 biomass has been documented through

stable isotopes in paleosols (9–12), grass phytoliths (13), herbi-
vore tooth enamel (14–16), and biomarkers in deep-sea sedi-
ments (17, 18). At 10 Ma in Africa, Asia, and North America, the
δ13C values for equid tooth enamel indicate a diet dominated by
C3 vegetation; by ca. 7 Ma, equids in Africa have a diet domi-
nated (>75%) by C4 vegetation (14, 15). In East Africa today
there is a distinct difference in diets of major herbivores, with
most mammals either being predominantly browsing (>ca. 75% C3)

or grazing (>ca. 75% C4), and there are relatively few mixed
feeders (Fig. 1).
A recent study of the early transition of C3 to C4 dietary change

in the Turkana Basin from 10 Ma to ca. 4 Ma (15) showed that
equids were the earliest mammals to fully exploit the C4 dietary
resource, attaining a predominantly C4-grazing diet by 7 Ma. Other
mammal groups (hippopotamids, elephantids, and bovids) changed
to a C4 diet later than did the equids. In this paper we document
dietary changes in the major Artiodactyla-Perissodactyla-Proboscidea
(APP) taxa in the Turkana Basin between ca. 4 Ma and 1 Ma and
compare those to dietary preferences of extant APP taxa in East
and Central Africa. The Turkana Basin has an excellent stratig-
raphy (19–22) with excellent preservation of fossils from 4 to
1 Ma; this study focuses on fossils recovered from the Koobi Fora,
Kanapoi, and Nachukui Formations of northern Kenya.
We compare dietary changes within the major APP taxa

through the past 4 Ma in the formations listed above using >900
individual fossils that represent the major taxa collected within the
principal stratigraphic intervals of these formations. Fossil mam-
malian diets are compared with those of >1,900 extant mammal
individuals sampled from >30 different regions and habitats in
eastern and central Africa. We compare the ecosystem structure
(C3 browsers, C3/C4 mixed diets, and C4 grazers) through the
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ecosystems are products of the coevolution of both grasses
and herbivores.
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Pliocene and Pleistocene and document changes in ungulate diets
over time.

Results
The distinction between C3 dicots and C4 grasses makes stable
isotopes a very useful tracer of diet in tropical ecosystems. Al-
though C4 dicots are known from Africa, they are uncommon in
most biomes (23). Likewise, plants using the Crassulacean acid
metabolism pathway (mostly succulents) are also uncommon in
most African ecosystems and also often have chemical defenses
that deter mammalian herbivory. In the discussion below, modern
samples for plants and tooth enamel have their respective δ13C
values corrected for the anthropogenic CO2 and are corrected to
preindustrial values (see SI Appendix, Detailed Methods) and are
reported as δ13C1750. Using data reported in ref. 24, we find
the δ13C1750 values for C3 plants from forest floor in closed
canopy (Ituri Forest), mesic (Aberdares, Nairobi region), and xeric
(Turkana, Samburu, Laikipia) biomes to be ca. −32.6, −26.6, and
−25.6‰, respectively. Mesic (panicoids) and xeric (chloridoids
and Aristida) grasses have δ13C1750 values of −10.0 and −11.2‰,
respectively. The isotopic distinction between mesic and xeric
vegetation within C3 and C4 ecosystems has previously been noted
for both C3 plants (25) and C4 plants (26, 27).

δ13C Assignments for C3 Browsing, Mixed C3/C4, and C4 Grazing.Diets
of African mammals are frequently discussed in terms of
C3-dominated browsing, mixed feeding, and C4-dominated graz-
ing. In this discussion, a browsing diet is dominated by C3 biomass
(primarily dicots), whereas a grazing diet comprises primarily C4
biomass (mainly grasses). SI Appendix, Table S1 gives geographic,
climatic, and ecological information for 30 geographic localities
with measured δ13C on keratin, collagen, or enamel from APP
mammals. In each collecting region we analyzed the different APP
species to determine the characteristic δ13C value for individuals
in that particular region; thus, each taxon has a region-specific
diet. Dataset S1 presents δ13C1750 data for >1,900 individuals from
East and Central Africa, distributed across >50 species of large
mammals; SI Appendix, Table S2 summarizes data for individual
species. For comparison between tissues, all values are reported as
enamel values using isotope enrichments in SI Appendix, Detailed
Methods. Analysis of these data using the Akaike Information
Criterion indicates that there are multiple modes for these indi-
vidual δ13C1750 values: A three-component mixture analysis iden-
tifies C3-browsing and C4-grazing components with modal δ13C1750
values of −10.9 ± 1.6 and 1.7 ± 1.6‰ for C3-browsing and
C4-grazing taxa, respectively, with mixed feeders having interme-
diate values. Isotope enrichment values e*enamel-diet are between
13.3 and 14.6‰ for ungulate mammals (24, 28), with the higher
values being associated with bovid ruminants; we use 14.1‰ for

all taxa in this paper (SI Appendix, Detailed Methods). Using these
enrichment values and the xeric- and mesic-mixing lines for
C3 dicots and C4 grasses, we have adopted a value of −8‰ as the
boundary between C3 browsers (<−8‰) and mixed C3/C4 diets
(>−8‰ to <−1‰), and a value of −1‰ for the boundary be-
tween C4 grazers (>−1‰) and mixed C3/C4 diets. Thus, defined
isotopically, “mixed C3/C4 diets” have C3/C4 diet ratios between
ca. 75/25 and ca. 25/75, given the uncertainties in the mixing lines
(SI Appendix, Fig. S2).
Most samples used for stable isotope analysis of fossils are

identified only to tribe for bovids and genus for other taxa;
therefore, in the discussion below we evaluate taxonomic groups
at the tribal level for bovids and at the generic level for other
taxa using this diet classification (Table 1). We consider nor-
malized proportions of C4 grazers (G), mixed C3–C4 diet gen-
eralists (M), and C3 browsers (B), referred to as G:M:B, using
the isotope ranges described above and in SI Appendix. For
comparison within a taxon in each time interval, we compare the
fraction of individuals that are C4 grazers, mixed C3–C4 diet
generalists, or C3 browsers. In contrast, for comparison of taxa
with respect to all other taxa within a single ecosystem or a time
slice, we use the average δ13C value to define the predomi-
nant mode of feeding: C4 grazer, mixed C3–C4 diet generalist, or
C3 browser.

G13Cenamel
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Fig. 1. δ13C1750 values for tooth enamel (or equivalent) for >1,900 mammals
from East and Central Africa (principal localities in SI Appendix, Table S1;
data from Dataset S1).

Table 1. Modern East African large mammal taxon groups (tribe
for Bovidae, genus for other taxa) used in this study

Taxon n %G %M %B

Artiodactyla
Bovidae
Aepycerotini 66 15 77 8
Alcelaphini 141 100 0 0
Antilopini 122 11 30 60
Bovini 167 84 13 4
Caprini 1 0 0 100
Cephalophini 63 0 2 98
Hippotragini 38 89 11 0
Neotragini 84 2 11 87
Reduncini 90 93 7 0
Tragelaphini 126 0 15 85
Giraffidae

Giraffa 61 0 7 93
Okapia 2 0 0 100

Hippopotamidae
Choeropsis 1 0 0 100
Hippopotamus 186 36 61 4

Suidae
Hylochoerus 26 0 0 100
Phacochoerus 101 80 18 2
Potamochoerus 46 2 22 76

Tragulidae
Hyemoschus 1 0 0 100

Perissodactyla
Equidae

Equus 157 91 8 1
Rhinocerotidae

Ceratotherium 13 100 0 0
Diceros 145 0 6 94

Proboscidea
Elephantidae

Loxodonta 280 0 19 81

Classified by the percentage of individuals that are C4 grazers (G), mixed
C3–C4 feeders (M), or C3 browsers (B) based on the isotope values (δ13C1750

values >−1‰, >−1‰ and <−8‰, and <−8‰, respectively). See SI Appendix
for complete data.
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Dataset S2 presents δ13C data for tooth enamel from >900
individual specimens from the Turkana Basin ranging in age
from ca. 4–1 Ma. The same isotopic ranges are used to distin-
guish between C3 browsing, mixed C3–C4 diets, and C4 grazing
for both fossil and modern mammals. We assume the δ13C value
of the atmosphere is constant for the Pleistocene and Pliocene
and has the same value as the preindustrial atmosphere (see
discussion in SI Appendix, Detailed Methods).

Diets of Mammalian Lineages in the Pliocene and Pleistocene. The
mammalian lineages considered here derive from different
members of the Kanapoi, Koobi Fora, and Nachukui Formations
and are of comparable age to the Shungura Formation in the
lower Omo Valley as shown in Fig. 2; K/Ar and 40Ar/39Ar dates
from the sequence are derived from all four formations and
many volcanic ashes are correlative between the formations.
Time intervals used in this study are based on correlative marker
horizons between the Koobi Fora and Nachukui Formations,
and are as follows from oldest to youngest: >4 Ma, 4.0–3.6 Ma,
3.6–3.4 Ma, 3.4–3.0, 3.0–2.5 Ma, 2.5–2.35 Ma, 2.35–1.9 Ma,
1.9–1.5 Ma, 1.5–1.3 Ma, and 1.3–1.0 Ma.
The APP taxa for modern specimens is discussed using the

normalized proportions of C4 grazing, C3–C4 mixed, and C3
browsing (G:M:B) for each taxon (SI Appendix). These results
largely confirm previous isotope surveys (29, 30) for modern Af-
rican bovids, hippos (31, 32), suids (33), and elephants (34) but
expand the database severalfold. However, comparison of indi-
vidual lineages of APP taxa show significant changes over time; a
number of taxa had diets in the fossil record that are quite dif-
ferent from those of their modern representatives (e.g., Aepy-
cerotini, Antilopini, Tragelaphini, and Loxodonta; SI Appendix,
Figs. S4 and S5).

Discussion
Ecosystem and Dietary Change Through the Past 4 Ma.
Dietary change through time for individual lineages. Many African
taxa have diets that remained essentially the same (less than 2‰
change) for much of the past 4 million years (SI Appendix, Table
S4 and Fig. S4). These include the taxa and lineages that are
presently C4 grazers, Alcelaphini, Bovini, Reduncini, Ceratotherium
(=Rhino-G), Metriochoerus-Phacochoerus and Equus, the C3–C4
mixed feeder Hippopotamus s. l., and the C3 browsers Neotragini,
Giraffa, Diceros (=Rhino B), and Deinotherium. Of these, it is
notable that modern Alcelaphini have δ13C1750 values that are
consistently more positive relative to fossil Alcelaphini. Such dif-
ferences could be due to several factors: a slight diagenetic ex-
change of 13C resulting in the fossils δ13C1750 values being slightly
more negative relative to modern samples, a change in the atmo-
spheric δ13C value causing a shift in the δ13C of plants and the
derived dietary δ13C of enamel, an increase in the isotope enrich-
ment (tooth enamel relative to diet) of alcelaphins that occurred in
the past million years, or a slight difference in diet whereby many
modern alcelaphins are true hypergrazers and the fossil alcelaphins
were not. Diagenesis is unlikely to more strongly affect alcelaphins
than other taxa, so diagenesis does not explain such differences.
Studies of North Atlantic benthic marine carbonates show relatively
constant δ13C values through the past ca. 6 Ma (see discussions in
refs. 35 and 36), indicating that the δ13C of the atmosphere was
similar through the past 4 Ma. At present, we cannot distinguish
between the last two possibilities—a change in the isotope en-
richment specific to alcelaphins, or a more C4-selective diet for
alcelaphins than all other taxa—although we favor the latter.
Hippotragin bovids and suids of the Nyanzachoerus-Notochoerus

lineage changed from a mixed feeding to a grazing diet during the
interval represented by this stratigraphic sequence.
Aepycerotini, Antilopini, and Tragelaphini represent three

bovid tribes whose diets have recently shifted to more negative
δ13C values, implying that the fossil representatives of these taxa
had a higher C4 component in their diet than their modern rel-
atives (SI Appendix, Table S4 and Figs. S4 and S5). Fossil
Aepycerotini in the Turkana Basin are enriched in 13C by several
per mil compared with modern Aepyceros; only specimens from
the Mara and adjoining Serengeti have δ13C values comparable
to those of most of the fossil Aepycerotini. Fossil Antilopini in all
except the lowest stratigraphic intervals have average δ13C values
between ca. −1 and −3‰, indicating a strong C4 preference,
which constrasts with modern antilopins that mostly prefer C3
browsing. Only the modern antilopin Eudorcas thomsonii has
values similar to the Turkana Basin fossil Antilopini (SI Ap-
pendix, Table S2). Thus, the Antilopini have shifted toward
browsing since the early to middle Pleistocene. Tragelaphini also
have shifted from ca. −5‰ in the fossil record to ca. −10 to
−12‰ in extant tragelaphins. Our survey of 126 modern trag-
elaphin individuals includes only 7 (i.e., ca. 6%) with δ13C
values >−5‰, whereas 16 of 43 of fossil tragelaphins (i.e., ca. 37%)
have δ13C values >−5‰. Tragelaphins from the Shungura
Formation (Members C–G; from ca. 3.0–2.0 Ma) also had high
δ13C values (37) similar to those measured on specimens from
the Nachukui and Koobi Fora Formations in the equivalent
time interval.
Loxodonta and Kolpochoerus-Hylochoerus are lineages that were

primarily C4 grazers from 4 to 1 Ma, but are now C3 browsers (SI
Appendix, Table S4 and Fig. S4). Both lineages have gone from
average δ13C values ca. −1‰ between 4 and 1 Ma to the modern
average δ13C1750 value of ca. −10 and −14‰, respectively. Such
abrupt diet changes imply significant changes in the roles of these
genera in the overall ecosystem, and perhaps a change in the
ecosystems themselves.
Four C4-grazer lineages become extinct in this interval:

Sivatherium, Notochoerus, Eurygnathohippus, and Elephas
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Fig. 2. Stratigraphic relationships in the Turkana Basin for major col-
lecting geographic regions: Shungura, Nachukui, Koobi Fora, and Kana-
poi Formations. Dashed lines show some important volcanic ash layers
(tuffs) used for correlation between formations; tuff names are in bold.
Stratigraphy and correlations based on earlier results (see SI Appendix,
Detailed Methods).

Cerling et al. PNAS Early Edition | 3 of 6

EA
RT

H,
A
TM

O
SP

HE
RI
C,

A
N
D
PL

A
N
ET

A
RY

SC
IE
N
CE

S
EC

O
LO

G
Y

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1513075112/-/DCSupplemental/pnas.1513075112.sd02.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1513075112/-/DCSupplemental/pnas.1513075112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1513075112/-/DCSupplemental/pnas.1513075112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1513075112/-/DCSupplemental/pnas.1513075112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1513075112/-/DCSupplemental/pnas.1513075112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1513075112/-/DCSupplemental/pnas.1513075112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1513075112/-/DCSupplemental/pnas.1513075112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1513075112/-/DCSupplemental/pnas.1513075112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1513075112/-/DCSupplemental/pnas.1513075112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1513075112/-/DCSupplemental/pnas.1513075112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1513075112/-/DCSupplemental/pnas.1513075112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1513075112/-/DCSupplemental/pnas.1513075112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1513075112/-/DCSupplemental/pnas.1513075112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1513075112/-/DCSupplemental/pnas.1513075112.sapp.pdf


(SI Appendix, Table S4 and Fig. S4). Sivatherium was a browser at
ca. 4 Ma and switched to grazing between 2 and 1 Ma, becoming
extinct after adapting to a C4-grazing diet. Notochoerus was a
C4-grazing suid; it became extinct in the basin by 1.6 Ma. Eur-
ygnathohippus was a grazing three-toed equid related to hippa-
rions that became extinct in the early Pleistocene. Elephas, a
C4-grazing elephant, was present in the basin from 4 to 1 Ma ago,
but it became extinct in Africa in the middle to late Pleistocene.
Cephalophins, neotragins,Giraffa, and the browsing rhino lineage

represented by Diceros have been dedicated browsers throughout
their known history. Deinotherium was similarly adapted through-
out the 4–1 Ma time interval but became extinct in Africa in the
middle Pleistocene; it has the most negative δ13C values of any
taxon for all time intervals in the Turkana Basin for which we
have analyses (Dataset S2).
Elephants and tragelaphin bovids are two groups often used

for paleoecological interpretations, yet their respective fossil
diets were very different from those of their modern closest
relatives (SI Appendix, Table S4 and Figs. S4 and S5); therefore,
the taxonomic presence of a lineage does not indicate that the
earlier fossil representative of the lineage had an ecological
function in the past similar to that of the modern representative.
For example, Loxodonta is often considered to be a keystone
species that strongly affects woody cover; although Loxodonta is
now predominantly a C3 browser (SI Appendix, Table S2), in the
late Pliocene and early Pleistocene Loxodonta was primarily a C4
grazer (SI Appendix, Table S4 and Figs. S4 and S5). Likewise,
tragelaphins are commonly assumed to be indicators of forest or
woodland (38, 39) because modern tragelaphins are browsers
(e.g., see Table 1 and SI Appendix, Table S2); the strongly mixed
C3–C4 diet of fossil tragelaphins suggests that they should not
be considered as indicators of forest or woodland habitat for
stratigraphic intervals in the Nachukui and Koobi Fora forma-
tions. Thus, the role of tragelephins in any fossil assemblage
should be considered using the δ13C of specimens specific to
that assemblage.
Ecosystem change through time. This study demonstrates important
changes in mammal diets and ecosystem structure through the
past 4 million years. Three bovid tribes, the warthog lineage,
Equus, and grazing rhinos have an essentially unchanged grazing
regime through the Omo Group sequence; in contrast, the grazing
giraffids, the grazing notochoere suids, grazing three-toed horses,
and African representatives of grazing Elephas became extinct.
The grazing gomphothere, Anancus, became extinct early in this
record. Two bovid tribes, giraffes, and browsing rhinos remain
dedicated browsers; browsing deinotheres became extinct. Three
bovid tribes incorporate more C3 browsing in the diets of extant
versus early Pleistocene representatives, whereas the formerly
C4-grazing Kolpochoerus lineage culminates in the C3-browsing
Hylochoerus and the formerly grazing Loxodonta switched to
a C3 browsing-dominated diet. Hippos remain opportunistic
feeders throughout.
Modern ecosystems in Africa are characterized by having a large

mammal fauna with distinctly different mixtures of G:M:B than
faunas in the fossil record. Many of the modern ecosystems sampled
are considered to be mosaics, including riparian forest with nearby
wooded grassland or grasslands. Forest ecosystems (closed canopy
forests, coastal and montane forests, and Afro-alpine in SI Appen-
dix, Table S1) are dominated by C3 browsers and mixed C3–C4
feeders; pure grassland faunas have >80% C4 grazers, and most of
the modern mosaic ecosystems have subequal numbers of C4
grazers and C3 browsers, with a minor number of C3–C4 mixed
feeders (Figs. 3A and 4B).
In this discussion we have assumed that C3 grasses are in-

significant in the isotopic contribution to the C3 diet resources. If C3
grasses play a role in this story, strong selectivity would have to be in
play because some lineages are essentially C4 grazers throughout the
sequences (e.g., equids, Rhino-G, and alcelaphins). Although C3

grasses were possibly present, the selectivity for C4 grasses by some
species and for C3 grasses by others must be invoked for such
dietary differences.
Using this G:M:B ternary classification, the fossil record in the

Turkana Basin shows distinctly different patterns for the early
(4.3–3.0 Ma), middle (3.0–2.35 Ma), and later (2.35–1.0 Ma) time
intervals compared with the modern ecosystems. Before ca. 2.35
Ma, the ecosystems had much higher percentages of C3–C4 mixed
feeders than are found today in East and Central Africa, with all
intervals having >40% C3–C4 mixed feeders. For comparison, only a
few of the 30 modern ecosystems has such a high percentage of
C3–C4 mixed feeders; those few are associated with forest or Afro-
alpine montane ecosystems with few large mammalian herbivores
(e.g., Bale and Mt Kenya). Fig. 3B shows the G:M:B ternary for the
individual stratigraphic collection intervals in each of the Kanapoi,
Koobi Fora, and Nachukui formations. After ca. 2.2 Ma there was
an abrupt change to many more grazing taxa and overall a higher
fraction of grazers than are found most of the modern ecosystems
studied for comparison (Figs. 3B and 4).
The number of nonruminant grazers after 2.35 Ma is particu-

larly striking, with between five and nine C4 grazers—in addition
to grazing bovids—in these intervals. At the generic taxonomic
level with which these comparisons are made, there are only three
modern nonruminant C4 grazers in East and Central Africa:
Phacochoerus, Equus, and Ceratotherium, although Hippopotamus
is locally a grazer in some regions (e.g., Turkana, Nakuru). Many
of the nonbovid C4-grazing fossil taxa are extinct (Sivatherium,
Notochoerus, Eurygnathohippus, and Elephas) or have switched to
browsing (the Kolpochoerus-Hylochoerus lineage and Loxodonta).
The time interval from 2 to 1 Ma is noteworthy for the number of
nonruminant grazers that are not part of the modern fauna.
Thus, there are several important ecological changes in the

Turkana Basin over time: The earlier time interval (ca. 4.1–2.35 Ma)
was dominated by C3–C4 mixed feeders, whereas the time in-
terval from ca. 2.35–1.0 Ma was dominated by bovid and non-
ruminant C4 grazers (Fig. 4A). The timing of this shift in
herbivore diet is consistent with previous studies that rely on taxo-
nomic and morphological indicators (38, 39); however, the pre-
viously presumed diets are not always consistent with the isotope
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Fig. 3. Ternary diagram showing proportions of C3 browsers, C3–C4 mixed
feeders, and C4 grazers from the orders Artiodactyla, Perrisodactyla, and
Proboscidea (APP); each taxon in each locality or time interval is represented
by the average δ13C for that taxon. Each point in the figure represents the
respective proportions of APP taxa that are C3 browsers, C3–C4 mixed feeders,
or C4 grazers at one modern locality, or one fossil assemblage from the
Turkana Basin of a specific age range. The green, blue, and orange triangles
represent regions where >50% of the taxa are C3 browsers, C3–C4 mixed
feeders, or C4 grazers, respectively. (A) Modern ecosystems as described in
SI Appendix, Table S1, using data from Dataset S1; Neotragini and Cepha-
lophini are excluded for comparison with fossil assemblages (see SI Appendix,
Fig. S3 for comparison with, and without, inclusion of Neotragini and Ceph-
alophini). (B) Fossil assemblages for age ranges discussed in this paper from the
Kanapoi, Nachukui, and Koobi Fora Formations; data from Dataset S2.
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data. Modern analog collections from East and Central Africa do
not represent ecosystems dominated by C3–C4 mixed feeders or
nonruminant grazers (compare with Fig. 4B). After 1.0 Ma, there
was a drastic transformation to the modern Africa dietary distribu-
tion, so that most nonruminant C4 grazers either became extinct or
changed their diets to browsing. The timing of the Pleistocene diet
changes since 1.0 Ma is uncertain and will come into focus as
samples are analyzed from this and other basins (40, 41).
The paleosol record in the Turkana Basin (11, 12, 42) shows a

decrease in woody cover with an increase in C4 biomass from 4 to 1
Ma, but changing from grassy woodland to wooded grasslands; no
paleosols indicate open C4 grasslands. Comparisons between the
dietary categories and paleosol ecological reconstructions for the
Shungura Formations and the Koobi Fora–Nachukui Formations
will be illuminating: From 4 to 1 Ma the Shungura Formation was
more wooded than the Koobi Fora and Nachukui formations.

Summary Statement. This study of the history of ecological change
in the Kanapoi, Nachukui, and Koobi Fora Formations shows
profound changes in ecosystem structure: For the period from 4.3 to
2.5 Ma, large mammal herbivorous taxa were dominated by C3–C4
mixed feeders. No modern dietary analog to this is found in East or
Central Africa. From 2.5 to 1.0 Ma, grazing taxa, especially non-
bovid grazers, became increasingly abundant; modern environments
in East and Central Africa do not have such a high fraction of the
nonbovid grazers. Many of the C4 grazing nonbovid herbivores
became extinct between 2 and 0 Ma; in addition, some taxa that
previously were C4 grazers or C3–C4 mixed feeders changed their
diet to C3 browsing. More APP taxa were present in the basin for
many of the stratigraphic intervals than exist in any modern
equivalent environment (e.g., compare totals for SI Appendix,

Tables S3 and S4); nowhere today in East or Central Africa is such
taxonomic diversity found for the APP taxa as was found in the
Turkana Basin from 4.3 to 1.0 Ma.
Interaction between the different large mammal herbivore taxa

likely plays a role in diet change. In modern African ecosystems
megaherbivores (>1,000 kg), particularly elephants and hippopota-
mus, maintain the structure and function of both wooded and grassy
biomes (43, 44) and play a key role in determining the availability of
food for mesoherbivores (4–450 kg; ref. 45). Therefore, changes in
the diet of large herbivores throughout the 4–1 Ma time interval
indicate significant alterations to mammalian dietary ecological
structure and competitive interactions and may relate to shifts in
vegetation structure. Ecological interactions with carnivores and
primates, including hominins, may also be important for un-
derstanding the evolution of herbivore diets (46–48).
The interplay of grass expansion in the time period from

10 Ma to the present will be critical in understanding dietary
changes that have occurred in the large mammal taxa in Africa.
Although NPP of C4 grasses in the tropics has gone from ca. 1%
at 10 Ma to ca. 50% today, there are no known C4-grass mac-
rofossils (i.e., fossils exhibiting Kranz anatomy, fossil plants with
δ13C values indicating C4 photosynthesis, or both) from Africa
between 1 and 10 Ma. Which specific C4 grasses were pre-
dominant, or even present, in the Pleistocene or Pliocene of
Africa (or elsewhere) is not known; such information will be key
toward understanding the development of tropical grasslands
and in understanding how fauna used the C4-grass dietary re-
sources. Changes in digestibility, toxin level, palatability, nutrient
distribution in space and in time, and relative abundances of the
different C4 grasses likely all played an important role in the
evolution of the mammalian diet in Africa. These factors may be
important in understanding how different APP herbivores com-
peted for dietary resources. It is well known that C4 photosyn-
thesis is favored by low atmospheric CO2 concentrations (i.e.,
less than 500 ppm by volume; refs. 4 and 14); the interval from
4 Ma to the present was continually below this CO2 threshold (49–
51). With each oscillation of CO2 in the atmosphere, tropical
ecosystems are subjected to stresses that could have cumulative
effects on ecosystem structure with respect to the comparative
success of C3 and C4 lineages. The role of climate change, in-
cluding changes in atmospheric CO2, will be better evaluated
when details of extinctions and diet change are better known.
These records are needed to evaluate the relationships between
behavioral, morphological, and environmental change, which
may not be synchronous (52).
This study of the dietary history of herbivores in the Turkana

Basin shows that modern animals often have diets different from
those of their closest fossil relatives. Likewise, for much of the past 4
million years, the large herbivorous fauna used dietary resources in
different ways than do their modern analogs.

Methods
Modern samples of APP taxa from East and Central Africa, and fossil samples
from thewell-dated Turkana Basin in northern Kenya, were analyzed for δ13C
using standard methods (SI Appendix, Detailed Methods).

Ecological comparisons formodern taxaweremade basedon regional ecological
grouping in restricted geographic areas, such as are presented in national parks or
reserves (SI Appendix, Table S1). We used the classification of White (53) for dis-
cussion of African vegetation (SI Appendix, Classification of African Vegetation).

Fossil samples were grouped by stratigraphic age, using stratigraphic
boundaries that are correlated between the Koobi Fora, Nachukui, Kanapoi,
and Shungura Formations (Fig. 2).
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1.  Detail Methods.  Modern herbivore mammal samples were collected from 30 national 
parks and reserves and other regions in Kenya, Ethiopia, Uganda, Gabon, and the 
Democratic Republic of Congo (Table S1); these modern samples were supplemented 
with museum collections (University of Addis Ababa, American Museum of National 
History, Lwiro-CRSN, Field Museum, National Museums of Kenya) and using published 
values. The habitat localities included a range of biomes from desert shrublands to closed 
forests (Table S1). We use the classification of White (53) for discussion of African 
vegetation (Appendix, Section 2). 
 Fossils from the Turkana Basin from 4.3 to 1.0 Ma in age were sampled from the 
collections of the National Museums of Kenya.  Bovids were identified to tribe; most 
other samples were identifiable to genus. We note in Dataset II when our taxonomic or 
stratigraphic assignments differ from the NMK catalog (ca. 20 of >900 specimens).  For 
discussion of diets through geological time, we use taxonomic classification to tribe for 
the Bovidae, and to genus for all other large mammal families. Groupings were made by 
time-intervals, using the established correlations, stratigraphic nomenclature, and 
geochronologies of the Koobi Fora Formation, the Nachukui Formation, Kanapoi, and 
Shungura Formations (2-16).  See Figure 2 for stratigraphic relationships. 
 13C/12C ratios of hair, collagen, and tooth enamel were analyzed using standard 
methods (i.e, combustion in O2 for organic material; reaction with H3PO4 for tooth 
enamel). Stable carbon isotopes were measured on hair or collagen samples on an isotope 
ratio mass spectrometer operating in continuous-flow mode after combustion at 1,600 °C 
in an elemental analyzer. Most bioapatites were pretreated using standard methods (3% 
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H2O2 followed by 0.1 M buffered acetic acid) and then were reacted with 100% H3PO4 
with the resulting CO2 being analyzed on a dual-inlet isotope ratio mass spectrometer; 
ivory samples were treated as in (17).  Some fossil samples were too small for pre-
treatment due to sampling restrictions: such small samples were corrected by comparison 
with samples run with and without treatment: the correction was 0.4‰ or less for these 
samples (see discussion in SI).  Results are reported in the standard per mil (‰) notation: 
 δ13C = (Rsample/Rstandard-1) * 1000  

where Rsample and Rstandard are the 13C/12C ratios of the sample and standard, respectively.  
The isotope standard is Vienna Pee Dee Belemnite (VPDB).  
 Bioapatite was assumed to be 11.1‰ enriched relative to hair, and 8.5‰ enriched 
relative to collagen as determined earlier (18, 19).  δ13C values of modern hair, collagen, 
and bioapatite were corrected to a common reference time near the beginning of the 
Industrial Revolution, considered to be 1750, using atmospheric δ13C data for the change 
in isotopic ratio of atmosphere due to human activities (20, 21); the δ13C1750 value for 
atmospheric CO2 is taken to be -6.3‰.  δ13C of deep-sea carbonates shows that the δ13C 
of the atmosphere, and therefore the end-members for C3 and C4 plants, is essentially 
constant back to ca. 6 Ma (35, 36). Plant data from Cerling and Harris (18) were used to 
estimate mixing lines for C3- and C4-plants, corrected to δ13C1750. All analyses from a 
single individual for both fossils and modern mammals were averaged to give a single 
isotopic ratio for that individual.    

 Due to small sample size, some fossil samples were not treated prior to analysis.  
We compared the results for treated and untreated samples for >200 samples; the average 
difference was ca. 0.4‰ (see Figure S1).  We corrected untreated samples using the 
relationship 

 δ13Ccorrected = 1.13 δ13Cuntreated + 0.64 

Reported results are for the corrected δ 13C values.   
 

2.  Classification of African vegetation. Various schemes have been used to classify 
African vegetation (1, 22). Woody cover is readily quantified using a variety of methods, 
and so we adopt a vegetation classification system that is based primarily on woody cover 
(the United Nations Educational, Scientific, and Cultural Organization (UNESCO) 
classification of African vegetation; Ref 1).  The principal vegetation types include forest, 
woodlands and grasslands, with some areas being mixed on the landscape scale (e.g., 
riparian woodlands associated with open woodlands or open grasslands). Forests have a 
continuous stand of trees at least 10-m tall with interlocking crowns; Woodland: an open-
stand of trees at least 8-m tall with woody cover > 40% and a field layer dominated by 
grasses; Bushland: an open-stand of bushes usually between 3- and 8-m tall with woody 
cover > 40%; Thicket: a closed-stand of bushes and climbers usually between 3- and 8-m 
tall;  Shrubland:  an open- or closed-stand of shrubs up to 2-m tall; Wooded grassland: 
land covered with grasses and other herbs, with woody cover between 10 and 40%; 
Grassland: land covered with grasses and other herbs,  with woody cover < 10%; Desert: 
Arid landscapes with a sparse cover dominated by sandy, stony or rocky substrate. This 
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classification does not define a boundary between forest and woodland in terms of woody 
cover, we will consider that “forest” has > 80% woody cover based on the requirement 
for “interlocking crown canopies”.  Within this structure, the scale at which fossil 
collections are made in both space (often 10s of km2) and time (often 102 to 105 years) the 
mixing of habitats occurs: we consider mixed habitats as having elements both of forest 
(especially riparian forests or woodlands) with more open wooded grasslands or 
grasslands (i.e., savanna).   

 Woody cover in modern ecosystems can be quantified from ground observations 
and from satellite photography with results usually giving very close estimates (e.g., Ref 
23).  Here we make no distinction between woodland (woody cover > 8 m tall), bushland 
(woody cover 3 to 8 m tall) and shrubland (woody cover < 3 m tall) and use "woodland" 
synomously for all three vegetation structure classes.  It is useful therefore, to further 
subdivide the classification above as follows: 0 to 10% woody cover: grassland; 10 to 20 
percent woody cover: open woody grassland; 20 to 40 percent woody cover: wooded 
grassland; 40 to 60 percent woody cover: open grassy woodland; 60 to 80 percent woody 
cover: woodland; 80 to 100 % woody cover: forest. 

 In the text, we minimize use of the term “savanna”, which suffers from colloquial 
misuse and, for that reason, is not recognized in the UNESCO classification.  Still, a 
modern ecological definition of the term "savanna" is comprehensive and includes 
structural, functional and evolutionary aspects. Structurally, a savanna is a “mixed tree-
grass systems characterized by a discontinuous tree canopy in a conspicuous grass layer” 
(24).  This, and other common usage of the term would include at least “wooded 
grasslands” and “grasslands” in the UNESCO structural categories described above, 
although woody cover varies significantly within the savannas (25, 26). Rainfall is widely 
recognized as the primary determinant of woody cover along with tolerance to fire, 
herbivory, and soil fertility (26-28).   

 
3.  Principal biome collection areas for modern mammals.  We collected the major 

large mammal extant taxa from 30 different regions in Eastern and Central Africa; 
collection regions, climate and ecological information is given in Table S1. Museum 
collections supplemented the collections we were able to make by visiting these 
localities.  Collections were principally from National Parks (NP) and National Reserves 
(NR). Broader geographic regions were included as follows: 

ABER Aberdares.  Collections were from the park Headquarters (HQ) and local ranger 
stations; additional samples were collected by Kenya Wildlife Service (KWS) 
personnel.  Museum samples included samples collected from forests north of 
Nairobi on the southern flanks of the Aberdares, but regions which are now outside 
the park boundaries. 

AMBO Amboseli.  Samples were from Koch (29) and Bocherens (30), with additional 
samples collected by KWS personnel. 

ATHI Athi plains.  Samples were from regions outside of the nearby Nairobi National 
Park.  Samples were from game ranches and from museum collections. 
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AWSH Awash.  Samples were from the Awash National Park HQ and samples 
collected within the park, with additional specimens from the larger Awash NP 
region from museum collections. 

BALE Bale Mtns.  Samples were from Bale NP and also from museum collections 
from nearby mountain regions of Ethiopia (south and east of Addis Ababa, 
elevation > 2500 m).   

CHYU Chyulu Hills.  Samples are from the Chyulu Hills NP; collections made by 
KWS personnel.  

ETHR Ethiopian Rift lakes.  Samples were from Rift Lake region of Ethiopia, including 
Nechisar NP. 

GMBA Garamba.  Samples are from Garamba NP in DR Congo. 
ITRI Ituri Forest.  Samples are from the Ituri NP in DR Congo. 
KBLE Kibale National Park.  Samples from Kibale NP; also includes data of Nelson 

(31). 
KCST Kenya Coast.  Samples are from the Boni NR and Arabuko-Sokoki NP, 

supplemented with museum samples collected from the coastal regions; also 
includes samples collected by KWS in the Tana delta region. 

KDPO Kidepo.  Samples from Kidepo NP. 
KZBG Kuhuzi-Biega.  Samples are from the mountain sector of Kahuzi-Biega NP and 

from forested mountains near Lake Kivu. "L" and "LP" samples are from the 
museum at CNRS-Lwiro. 

LAIK Laikipia.  Samples are from the Laikipia plateau region of Kenya. 
LEDW Lake Edward.  Samples are from Queen Elizabeth Park in Uganda, and the 

Ishango and Lulimbi regions of Virunga Park of DR Congo, all bordering Lake 
Edward. 

LOPÉ.  Samples were collected over 20 year period in Lopé National Park (data from 
Ref 32). 

MAGO Omo / Mago. Samples are from the lower Omo Valley, principally from park 
headquarters region. 

MARA Masai Mara.  Samples are from the Serengeti plains, principally the Masai 
Mara region in Kenya with samples collected by KWS, but also including published 
samples in Tanzania (33, 34). Also includes museum specimens. 

MBRO.  Samples from Lake Mburo NP. 
MERU.  Samples from Meru NP, Bisandi NR, Kora NP and nearby regions. 
MTKE Mt Kenya.  Samples are from the Mt Kenya forests, including museum 

specimens. 
NAKG Nakuru - shore.  Samples are from the alkali grasslands in Nakuru NP.  
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NBNP Nairobi NP.  Samples are from Nairobi National Park, including the grasslands, 
the woodland - grassland transition, and the riparian corridors. 

RFTV Kenya Rift Valley.  Samples are from the plains region from Lake Naivasha to 
Nakuru.  This is principally wooded grasslands and grasslands; includes riparian 
woodlands and bushlands. Includes data from Ambrose and DeNiro (35). 

SAMB Samburu NR.  Samples were principally from Samburu and Buffalo Springs 
NRs, supplemented by museum samples collected before NR boundaries were 
established.  

SIME Simien Mtns. Samples are from the Simien Mountains NP. 
TANA lower Tana River. Samples are from the plains of the lower Tana River, 

between Garissa and Garsen; samples do not include the Tana River delta region, 
which are grouped in KCST. 

TRKG Turkana - grassland.  Samples were from the alkali grasslands on the eastern 
shore of Lake Turkana; from near Koobi Fora to Ileret. Includes data from (36). 

TRKX Turkana - regional. Samples were from the inland parts of the Turkana region, 
principally on the east side of Lake Turkana, but not including the alkali grasslands 
immediately adjacent to the lake.  Also includes a few specimens on the west side 
of Lake Turkana. Includes data from (36). 

TSVO Tsavo NP.  Samples were from both Tsavo East NP and Tsavo West NP and the 
greater region.  Includes data from (37). 

 
4.  Mixing lines and δ13C assignments for C3-browsing, mixed C3/C4, and C4-

grazing.    
Mixing lines for different estimating the fraction of C3- and C4-biomass contributions 

to herbivores are considered in the context of the range of δ13C plants found in African 
ecosystems, and on the range of isotope enrichment factors which are likely related to 
digestive physiology (38).  Figure S2 shows the mixing lines derived using δ13C1750 values 
from modern African vegetation as discussed in the text, and the resulting mixing lines 
accounting for differences in isotope enrichment factors for enamel derived from diets of 
C3 and C4 biomass.  The isotope mixing equation for biomass is: 

 δ13Ci,mix = fi,C3 δ13Ci,C3  +  fi,C4 δ13Ci,C4 
Where i,mix is the mixture for xeric (i = x) ecosystems or mesic (i = m) ecosystems, 
respectively; fi,C3 is the fractional contribution of C3 biomass to the xeric ecosystem or 
mesic ecosystem, respectively; fi,C4 is the fractional contribution of C4 biomass to the 
xeric ecosystem or mesic ecosystem, respectively; δ13Ci,C3 is δ13C1750 value of C3 biomass 
end-member for the xeric ecosystem or mesic ecosystem, respectively; δ13Ci,C4 is δ13C1750 
value of C4 biomass end-member for the xeric ecosystem or mesic ecosystem, 
respectively.  End-member δ13C1750 values for C3 and C4 plants are taken to be -25.6‰ 
and -11.2‰, respectively for xeric ecosystems; end-member δ13C1750 values are -26.6‰ 
and -10.0‰, respectively, for mesic ecosystems (see text).  The mixing line for tooth 
enamel is 13.3 to 14.6‰ enriched relative diet (38).  Therefore, the thickness of the 
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mixing line for tooth enamel – and the projected fractions of C3- and C4-contributions to 
diet – results from the uncertainty in the end-member values for C3- and C4-dietary end-
members and the isotope enrichment values. 

To discuss dietary categories, it is necessary to define some terms.  The isotope 
difference between C3- and C4-vegetation makes the grazing-browsing continuum easier 
to quantify.  Because tropical grasses (below ca. 2500 m elevation) are almost 
exclusively C4, we define C4-grazers as having a predominantly C4-diet.  Hypergrazers 
have a diet indistinguishable from 100% C4-diet; in Figure S2 this corresponds to tooth 
enamel values have δ13C1750 > + 2‰.  C3-dominated diets are considered to be browsers; 
note that this means that C3 forbs contribute to the C3-browse diet as well as do the C3-
woody plants. Hyperbrowsers have a diet indistinguishable from 100% C3-diet; in Figure 
S2 this corresponds to a δ13C1750 values <-12‰.  In closed canopy forests, the understory 
can be very depleted in 13C; a hyperbrowser with δ13C1750 < -14‰ is likely to be a closed 
canopy C3-browser. The continuum of diets between the hypergrazers and hyperbrowsers 
is arbitrarily divided into C3-browsers, mixed C3-C4 feeders, and C4-browsers. For 
convenience we define C3-browsers to have a C3-dominated diet (> ca. 75% C3) and C4-
grazers to have diets dominated by C4 biomass (> ca. 75% C4). Those with intermediate 
diets are called C3-C4 mixed feeders. For this paper, this gives the following ranges for the 
stable isotope dietary classification as derived from Figure S2: 

δ13C1750 > 2‰:  C4-hypergrazers 

δ13C1750 > -1‰:  C4-grazers 

δ13C1750 > -1‰ and < -8‰:  C3-C4 mixed feeders 

δ13C1750 < -8‰: C3-browsers 

δ13C1750 < -12‰:  C3-hyperbrowsers  

δ13C1750 < -14‰:  C3-closed canopy browsers  
We note that the isotope enrichment factor may vary by >1‰ in the mammals 

considered in this paper, and that some minor differences in the δ13C1750 values for enamel 
when comparing different taxa (e.g., suids to bovids) could arise from this difference. 
Evaluation of these enrichment factors could play a role in the future understanding the 
paleo-physiologies of digestion of the fossil mammal taxa. Given this uncertainty, we 
expect that the δ13C1750 ranges used here may be changed in the future to recognize such 
physiological differences for certain taxa. 

Table S2 shows the average δ13C1750 values for the individual species analyzed in this 
study.  Table S3 shows the distribution of C4-grazers, mixed C3-C4 feeders, and C3-
browsers in each of the modern ecosystems considered in this study. Table S4 shows the 
average δ13C values (tribe or genus) for modern and fossil time intervals for East and 
Central African large herbivore taxa (tribe/genus), summarized from Datasets I and II. 
Figures S4 and S5 show the trend over time for the diets of major lineages in the Turkana 
Basin for the normalized proportions of C4-grazers, C3-C4 mixed, and C3-browsers 
(G:M:B) with comparison to the modern diets of those lineages.  
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5.  Diets of mammalian lineages in the Pliocene and Pleistocene.  The mammalian 
lineages considered here derive from different members of the Kanapoi, Koobi Fora, and 
Nachukui formations and are of comparable age to the Shungura Formation in the lower 
Omo Valley as shown in Figure 2.  Time intervals employed are as follows from oldest to 
youngest: > 4 Ma; 4.0 to 3.6 Ma, 3.6 to 3.4 Ma; 3.4 to 3.0; 3.0 to 2.5 Ma; 2.5 to 2.35 Ma; 
2.35 to 1.9 Ma; 1.9 to 1.5 Ma; 1.5 to 1.3 Ma; 1.3 to 1.0 Ma. 

Artiodactyla:  Bovidae.  The Bovidae comprise the most diverse large mammal 
family in Africa today, with dietary specialties ranging from closed-canopy 
C3-hyperbrowsers to C4-hypergrazers. Isotopic results on modern bovid specimens 
confirm previous observations (39, 40) for diets of East African and southern African 
bovids; however, as is shown below, many fossil bovids have a distinctly different diet 
than that of their modern counterparts.  

Aepycerotini are today represented by the impala (Aepyceros melampus), which has a 
mixed diet throughout most of its modern range with an average δ13C1750 value of -3.9 ± 
2.6 (n = 66); the relative proportions of modern individuals with grazing:mixed:browsing 
(G:M:B) diets is 15:77:8 (Table 1 and Table S2). Aepycerotini from the > 4.0 Ma interval 
have a G:M:B diet of 25:50:25 (n =24), whereas those from all younger intervals together 
have a G:M:B diet of 53:47:0 (n = 43).  Modern Aepycerotini have diets closer to their 
relatives 4.3 to 4.0 Ma in age, whereas from 4.0 to 1.0 Ma the Aepycerotini had a 
stronger grazing component to their diet than do their modern relatives 

Alcelaphini consistently have the highest δ13C of any bovid tribe or of any other APP 
taxa in East and Central Africa.  All four genera of modern alcelaphins (Alcelaphus, 
Beatragus, Connochaetes, Damaliscus) have average δ13C1750 values >2‰, indicating a 
pure or nearly pure-C4 diet; few other modern APP taxa achieve such positive δ13C1750 
values.  As previously noted (39, 40) such high values indicate either extreme selectivity 
in diets or that the isotope enrichment factor is especially high for alcelaphins compared 
to other mammals including other bovids.  

Throughout the Pliocene and Pleistocene record in the Turkana Basin, alcelaphins 
have the highest, or second highest δ13C value for any mammalian taxon within any time 
interval, with average values between -0.2 and 2.0‰ (G:W:B = 93:7:0; n = 129 
individuals in the fossil record).  Fossil specimens have slightly more negative δ13C 
values than modern alcelaphins; thus, using the 13C/12C ratios defining hypergrazers 
discussed in this paper, none of the fossil alcelaphins are hypergrazers whereas most 
modern alcelaphins are hypergrazers. 

Antilopini in our study include four extant genera—Eudorcas (Thomson's gazelle), 
Litocranius (gerenuk), Nanger (Grant's and Soemmering's gazelles), and Oreotragus 
(klipspringer).  Eudorcas is primarily a grazer, Litocranius and Oreotragus are browsers, 
and Nanger is a mixed-feeder to browser (Table S2).  Fossil Antilopini are difficult to 
distinguish from fossil Aepycerotini using only the dental material available for isotopic 
study; as a result, these fossil specimens are provisionally classified as Antilopini based 
on the judgment of the authors and generally agree with identifications in the Turkana 
Basin fossil catalog (41).  Fossil Antilopini from the Turkana basin had diets with a much 
higher fraction of C4-grass than those of modern Antilopini, especially the larger 
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members of the tribe.  From ca. 4.3 to 2.35 the G:M:B proportion of antilopins is ca. 
17:75:8 (n = 12), but from 2.35 to 1.0 Ma it is 54:46:0 (n = 26).  

Bovini are today represented in Africa by the Cape buffalo (Syncerus caffer); 
domestic cattle are not reported here. The diet of the Cape buffalo ranges from pure-
grazing in most open ecosystems to pure-browsing in closed forests.  Fossil Bovini in the 
Turkana Basin were primarily C4-grazers but with some C3-C4 mixed feeders (G:M:B = 
76:24:0, n = 21).  Syncerus are primarily C4-grazers in most non-forested regions of East 
Africa.   

Caprini are represented today in East and Central Africa by the Walia ibex (Capra 
walie), which has a C3 diet (Table S2); it is restricted to high mountains in Ethiopia.  
Domestic caprins (sheep and goats) are present throughout East and Central Africa but 
are not reported here. Caprins are very rare in the Kanapoi, Nachukui or Koobi Fora 
Formations and none have been sampled for stable isotopes. 

Cephalophini are represented in Africa today by the forest duikers (Cephalophus and 
Philantomba) and the bush duiker (Sylvicapra).  All are C3-browsers (Table S2).  
Cephalophini fossils are rare in the Kanapoi, Nachukui or Koobi Fora Formations; no 
fossil duikers have been sampled for stable isotopes from these formations. 

Hippotragini are C4-grazers today (G:M:B = 89:11:0; n =38) as were most fossil 
hippotragins younger than 2.5 Ma (G:M:B = 80:20:0; n =10).  However, hippotragins 
from early stratigraphic intervals ca. 4 to 2.35 Ma in age, had a mixed C3-C4 diet (G:M:B 
= 29:71:0; n = 7) although the sample size is limited. 

Neotragini today are mostly C3-browsers with the exception of the oribi (Ourebia 
ourebi), which is a mixed C3-C4 feeder to C4-grazer.  Neotragin fossils are very rare in the 
Kanapoi, Nachukui, and Koobi Fora Formations. 

Reduncini are today represented in 17 of the ecosystems we consider and are 
represented by four species:  the waterbuck (Kobus ellipsiprymnus), the Ugandan kob 
(Kobus kob), Chanler's reedbuck (Redunca fulvorufula), and the Bohor reedbuck 
(Redunca redunca).  The modern reduncins that we examined are primarily C4 -grazers 
(Table S2), with only a few mixed C3-C4 feeders that are generally associated with 
mountain habitats (e.g., Mt. Kenya, Bale Mountains; see Dataset I).  Fossil reduncins in 
the Nachukui and Koobi Fora Formations are also primarily grazers (Dataset II and 
Figure S4). 

Tragelaphini, the spiral-horned antelopes, today have diets strongly skewed towards 
browsing (Table 1 and Table S2).  Although stable isotope data show the bongo and 
bushbuck to be hyper-browsers, all others are browsers.  The eland, lesser kudu, and 
greater kudu have δ13C1750 values averaging between ca. -8.5‰ and -10‰ and some 
individuals have a mixed C3-C4 diet (i.e., average δ13C1750 between -1‰ and -8‰).  
However, the average δ13C for fossil tragelaphins from all stratigraphic intervals is > -8‰ 
indicating that, on average, tragelaphins had a mixed C3-C4 diet for the period from 4 to 1 
Ma.  The extant tragelaphin with the most positive δ13C1750 value is the eland 
(Taurotragus oryx, δ13C1750 = -8.5 ± 2.1, n = 35; G:M:B = 0:31:69); its δ13C values are 
significantly different (P = 0.0002) than the average of all fossil specimens of 
tragelaphins (δ13C = -5.9 ± 2.9, n = 43; G:M:B = 7:67:26).  Thus, fossil tragelaphins in 
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the Nachukui and Koobi Fora regions record a diet different than that of any extant 
tragelaphin species in East and Central Africa: fossil tragelaphins were predominantly 
mixed C3-C4 feeders, but extant tragelaphins are browsers or hyperbrowsers. Studies of 
tragelaphini in the Shungura Formation, in the lower Omo Valley, have previously noted 
δ13C values that are more enriched in 13C than extant tragelephins (42). 

Artiodactyla:  Giraffidae.  The Giraffidae were represented in Africa from 4.3 Ma to 
the present Ma by 3 genera: Giraffa, Okapia, and Sivatherium.  Extant giraffes live in 
open woodland habitats and the okapi is a forest-dweller. Sivatherium became extinct by 
ca. 1 Ma. 

Extant giraffes are primarily browsers with only a small fraction being mixed feeders 
based on carbon isotope data (δ13C1750= -10.6 ± 1.6 (n=61); G:M:B = 0:7:93). Fossil 
Giraffa from the Kanapoi, Nachukui and Koobi Fora Formations had a similar diet (δ13C 
= -11.4 ± 1.1 (n =38); G:M:B = 0:0:100). Thus, Giraffa has not significantly changed its 
diet from 4 Ma to present. 

African sivatheres were large bodied, short-necked giraffids that changed diet over 
time with associated morphological changes (43).  Sivatherium specimens older than 2.35 
Ma have a δ13C = -10.4 ± 1.6‰ (n = 10; G:M:B = 0:10:90) indicating a diet dominated by 
C3-biomass; Sivatherium specimens from 2.35 to 1.9 have a δ13C = -4.6 ± 2.5‰ (G:M:B 
= 0:80:20; n = 5); Sivatherium specimens younger than 1.9 Ma have a δ13C = -1.2 ± 2.3 
(G:M:B = 67:33:0; n = 9). Thus, between 3 and 1.5 Ma Sivatherium changed from a C3-
browsing to a C4-grazing giraffid.  The sample size so far is too small to determine the 
details of the timing of this change. 

Artiodactyla:  Hippopotamidae.  In East and Central Africa Hippopotamus 
amphibius, the extant hippo, has a diet that ranges from C3-dominated to C4-dominated 
(44-46).  The 186 modern H. amphibius sampled have an average δ13C1750 value of -2.1 ± 
2.6‰ (G:M:B 36:61:3) indicating a predominantly mixed diet although approximately 
40% of modern hippos have a grazing diet.    

Two genera of hippos have been recognized in the Kanapoi, Nachukui, and Koobi 
Fora Formations. Early workers identified these as Hippopotamus and Hexaprotodon 
(47) but the latter is referred to cf. Hippopotamus (48) pending selection of a new name 
for this genus. In this paper we group Hippopotamus and cf. Hippopotamus as 
Hippopotamus sensu lato. 

The Pliocene and earliest Pleistocene hippos in the Kanapoi, Nachukui, and Koobi 
Fora Formations (4.3 to 2.35 Ma) have an average δ13C value of -3.3 ± 2.9 (G:M:B = 
23:71:6, n = 48). However, hippos 2.35 to 1.0 Ma in age have an average δ13C value of 
-1.1 ± 1.4‰ (G:M:B = 49:51:0). Thus, through the past 4.3 Ma hippos in East Africa 
have had diets that are strongly biased towards C4-vegetation, with overall G:M:B 
proportions between ca. 75:25:0 to ca. 25:75:0. Although many hippos are predominantly 
C4-grazers, occasional opportunistic individuals, both modern and fossil, have isotopic 
values that record a very high fraction (i.e., >75%) of C3 biomass in the diet such that 
they are considered to be C3-browsers. 

Artiodactyla:  Suidae.  The three genera of suids in East and Central Africa—
Hylochoerus (the forest hog), Phacochoerus (warthog), and Potamochoerus (bush and 
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red river hogs)—have different δ13C dietary niches (49) with average δ13C1750 values of -
14.1 ± 3.3‰ (n = 26), -0.1 ± 2.4‰ (n = 101), and -10.9± 3.9‰ (n = 46), respectively; 
these genera have corresponding G:M:B proportions of 0:0:100; 80:18:2, and 2:22:76, 
respectively.  Hylochoerus is a C3-hyperbrowser (i.e., δ13C1750 < -12‰) in forested regions 
(Ituri, Kahuzi-Biega, Kibale, Mt. Kenya, Aberdares); many individuals from these forests 
have δ13C1750 values < -14‰ indicating a diet derived from closed canopy understory (49, 
50).  Potamochoerus is a C3-hyperbrowser in the Kahuzi-Biega and Ituri closed forests. 

Four lineages of suids are found in the Plio-Pleistocene of East Africa:  
Nyanzachoerus—Notochoerus, Kolpochoerus–Hylochoerus, Metridiochoerus—
Phacochoerus, and Potamochoerus.  Evolutionary trends of suids related to dental 
changes from 4 to 1 Ma were discussed by Harris and Cerling (49). Notochoerus 
specimens were predominantly a mixed C3-C4 feeder between 4.3 and 4.0 Ma (δ13C = -3.4 
± 2.7, G:M:B = 25:75:0; (n = 8), but were predominantly C4-grazers by  2.0 Ma (Upper 
Burgi Member in the Koobi Fora Formation; δ13C = -0.7 ± 0.5; G:M:B = 83:17:0, n = 
12).  Kolpochoerus and Metridiochoerus were predominantly grazers throughout the 
intervals sampled with high C4-grazer proportions (G:M:B = 82:18:0 (n = 38) and 93:7:0 
(n = 67, respectively)). By 2.0 Ma, the region had three sympatric genera of suids that 
were C4-grazers. Of these, the Nyanzachoerus-Notochoerus lineage became extinct, the 
Kolpochoerus-Hylochoerus lineage exploited more closed habitats and became C3-
browsers in the past 1 Ma, and the Metridiochoerus-Phacochoerus lineage continued as 
C4-grazers. 

Perissodactyla:  Equidae.  Today, African equids are represented by species of the 
genus Equus.  Extant Equus is a C4-grazer with an average δ13C1750 value of 1.3 ± 1.4‰ (n 
= 147) with G:M:B proportions of 91:8:1.  The most positive δ13C value is 3.7‰, 
approximately one per mil less enriched in 13C than the most positive alcelaphin.  This 
difference in isotope values for equids compared to alcelaphins, both widely thought to 
be pure C4-grazers, may be related to the difference in isotopic enrichment by hind-gut 
fermenting equids compared to ruminating bovids (see 18, 38). 

Fossil equids in the Nachukui and Koobi Fora Formations are represented by two 
genera.  The hippionin Eurygnathohippus (51, 52) is present from before 4 Ma to ca. 1.5 
Ma; it is a C4-grazer with an average δ13C value of -0.3 ± 1.2‰ (n =33) and G:M:B 
proportions of 79:21:0. Equus is present in the Omo-Turkana Basin from 2.3 Ma 
onwards; its average δ13C value is -0.1 ± 1.1‰ (n = 39) with G:M:B proportions of 
82:18:0.  Thus, there is virtually no difference in diets of the two equid lineages based on 
stable isotope evidence. 

Of the two C4-grazing equids present in the Nachukui and Koobi Fora Formations, 
Eurygnathohippus, representing the Hipparion lineage, became extinct in Africa during 
the middle Pleistocene (52).  Equus has been a C4-grazing equid since its first appearance 
in Africa during the late Pliocene. 

Perissodactyla:  Rhinocerotidae.  The two extant genera of rhinos in East and 
Central Africa, Diceros and Ceratotherium, have distinctly different diets.  Diceros is a 
C3-browser with an average δ13C1750 value of enamel of -10.2 ± 1.2‰ (n = 145; G:M:B = 
0:6:94) while Ceratotherium is a C4-grazer with a δ13C1750 value of +1.4 ± 1.2‰ (n = 13; 
G:M:B = 100:0:0). 
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Many of the fossil rhinocerotids analyzed were so fragmentary that identification to 
genus was not possible.  We grouped analyses into "B" (values with δ13C < -5‰) and "G" 
(values with δ13C > -5‰); this resulted in a clear separation into two groups as no 
analyses were between -1‰ and -7‰.  "Rhino B" and "Rhino G" had an average δ13C 
values of -10.1 ± 1.2‰ (n = 17; G:M:B 0:6:94) and 0.3 ± 0.8 (n = 19; G:M:B = 100:0:0), 
respectively.  These values are indistinguishable from those of modern Diceros and 
Ceratotherium, respectively.  However, many Miocene rhinos in East Africa, older than 
those sampled here, had C3-C4 mixed diets (53). 

Thus, the fossil record of rhinos in the Nachukui and Koobi Fora Formations 
comprises two groups of rhinos with similar δ13C values to the two modern extant rhinos. 

Proboscidea; Deinotheriidae.  Deinotheres are an extinct family of proboscideans 
that were present in Africa for the past 25 or so million years, becoming extinct in the 
early to middle Pleistocene.  Deinotheres from the Nachukui and Koobi Fora Formations 
are C3-browsers, with an average δ13C of -12.7 ± 0.8 (n = 28; G:M:B = 0:0:100).  
Deinotherium has, in most stratigraphic intervals, the most 13C-depleted δ13Cenamel of any 
fossil taxon in the basin.   

Proboscidea; Elephantidae. Loxodonta is the only extant elephantid genus in Africa.  
Loxodonta is a C3-browser to C3-C4-mixed feeder (54).  Modern Loxodonta is represented 
by two species.  The savanna elephant, Loxodonta africana has an average δ13C1750 value 
of -9.2 ± 2.4‰ (G:M:B = 0:24:76; n = 225); the forest elephant, Loxodonta cyclotis, has a 
δ13C1750 value of -14.1 ± 1.3 (G:M:B = 0:0:100; n = 55). 

Two elephant genera are recorded in the stratigraphic intervals under discussion:  
Elephas and Loxodonta.  Elephas was more abundant than Loxodonta from 4 to 1 Ma in 
the Turkana Basin.  Elephas had a C3-C4-mixed diet from 4.3 to 4.0 Ma (δ13C = -2.7 ± 
1.1‰ (n = 7; G:M:B = 0:100:0)) but had evolved into a C4-grazer by the early Pleistocene 
(δ13C = -0.4 ± 1.2‰ (n=17; G:M:B = 82:18:0)).  Loxodonta shows a similar trend: for the 
lowest stratigraphic intervals, from 4.0 to 2.35 Ma, Loxodonta was a mixed C3-C4- feeder 
(average δ13C = -2.1 ± 1.6 (n=12; G:M:B = 17:83:0) whereas it was a C4-grazer for the 
period from 2.35 to 1.9 Ma (average δ13C = 0.1 ± 0.4 (n = 5; G:M:B = 100:0:0)).   

The two elephantids present in the Turkana Basin from 4 to 1 Ma were both mixed 
C3-C4-feeders at 4 Ma and gradually changed their diets to become C4-grazers by 2 Ma.  
Elephas became extinct in the middle to late-Pleistocene; Loxodonta persists but extant 
Loxodonta is a C3-browser to C3-C4- mixed feeder. 

Proboscidea: Gomphotheriidae. Anancus is the only gomphotheriid recovered from 
this stratigraphic interval, becoming extinct in the basin in the Pliocene. A single 
Anancus tooth from the sub-A stratigraphic interval has a δ13C value of -0.1‰, indicating 
a C4-grazing diet. 

 
6.  Comparison of dietary guilds.  The fossil record has only rare specimens of the 

bovid tribes Neotragi and Cephalophini.  Therefore, we have used the modern collections 
for comparison but in Figures 3 and 4 we have excluded the modern and fossil Neotragini 
and Cephalophini from the analysis.  Figure S3 shows that modern the fractions of C4-
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grazing, mixed C3-C4, and C3-browing taxa have similar proportions for the 30 modern 
ecosystems, whether including all taxa (Figure S3A) or excluding the Neotragini and 
Cephalophini (Figure S3B) in the analysis.  All data from Dataset I.   

 
7.  Datasets 
7.1.  Dataset I.  Dataset I includes δ13C values as measured for >1900 modern 

individual mammals from East and Central Africa. Geographic origin, estimated year of 
death, and ecosystem groupings presented. δ13C values presented as the original data for 
enamel, keratin, or collagen, with the equivalent δ13C(enamel), and the enamel value 
corrected to δ13C1750 (see text).  Data is from this study and references (18, 29-37, 44–45, 
49–50, 54–56). Geographic location and date of death is estimated from information 
provided by collector and vary in degree of accuracy. 

7.2 Dataset SI II.  Dataset II includes δ13C values for fossils collected from the 
Kanapoi, Nachukui, and Koobi Fora Formations in the Omo-Turkana Basin, Kenya. Data 
is from this study and from references (37, 49, 54, 57–58) 
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Table S1.  Locations, climate parameters, and dominant biomes of modern sites in East and Central Africa.   
 
 Abbrev1 location2 Country3 MAT4 MAP5 lat6 long7 elev8 Ref9 vegetation description10 UNESCO11    
ABER Aberdares Kenya 11.6 1420 0.4 S 36.8 E 2700* 59 evergreen montane forest forest 
AMBO Amboseli Kenya 24.0 350 2.6 S 37.2 E 1140 60 grassland to wooded grassland wooded grassland  
ATHI Athi plains Kenya 19.4 850 1.5 S 37.1 E 1640 61 grassland to wooded grassland wooded grassland 
AWSH Awash Ethiopia 25.0 480 8.9 N 40.0 E 1050 61 acacia wooded grassland with riparian woodland riparian with wooded grassland 
BALE Bale Mtns Ethiopia 9.0 1220 6.9 N 39.6 E 3500* 96 Afro-Alpine forest to moorland Afro-alpine 
CHYU Chyulu Hills Kenya 21.0 650 2.6 S 37.9 E 1850* 45 wooded grassland to grassy woodland wooded grassland 
ETHR Ethiopian Rift lakes Ethiopia 20.2 510 6.0 N 37.7 E 1540 63 wooded grassland wooded grassland 
GMBA Garamba DRC 24.4 1250 4.0 N 29.5 E 800 64 grassland to woodland, gallery forests wooded grassland  
ITRI Ituri Forest DRC 22.4 1640 1.8 N 29.9 E 800 65,66 evergreen forest closed canopy forest 
KBLE Kibale Uganda 19.0 1660 0.5 N 30.5 E 1250* 67 evergreen forest open to closed canopy forest  
KCST Kenya Coast Kenya 25.3 1230 3.3 S 39.9 E 30 59 coastal lowland forest open to closed forest 
KDPO Kidepo Uganda 25.1 810 3.9 N 33.8 E 1120 68 wooded grassland wooded grassland  
KZBG Kahuzi-Biega DRC 20.1 1610 2.3 S 28.6 E 2000* 69 evergreen montane forest closed canopy forest 
LAIK Laikipia Kenya 21.8 640 0.3 N 36.9 E 1700 70 wooded grassland wooded grassland 
LEDW Lake Edward Uganda, DRC 25.3 680 0.2 S 29.9 E 924 71 forest to wooded grassland wooded grassland 
LOPÉ Lope Gabon 25.5 1490 0.5 S 11.5 E 400 72 rainforest closed canopy forest 
MAGO Omo / Mago Ethiopia 26.0 830 5.5 N 36.3 E 600 73,74 semi-desert bushland with riparian forest riparian with wooded grassland 
MARA Masai Mara Kenya 20.5 1000 1.4 S 35.0 E 1600 75,76 grassland, with riparian woodland wooded grassland 
MBRO Lake Mburo Uganda 21.3 890 0.6 S 31.0 E 1300 77 wooded grassland to grassy woodland wooded grassland / grassy woodland 
MERU Meru NP Kenya 23.5 380 0.1 N 38.2 E 500 59,78 wooded grassland with riparian woodland riparian with wooded grassland 
MTKE Mt Kenya Kenya 7.4 1250 0.3 S 37.2 E 2700* 79 evergreen forest forest 
NAKG Nakuru - shore Kenya 17.7 870 0.4 S 36.1 E 1850 59,80 alkali grassland grassland 
NBNP Nairobi NP Kenya 18.8 910 1.4 S 36.8 E 1700 59 grassland to woodland mixed woodland to grassland 
RFTV Kenya Rift Valley Kenya 17.3 620 0.5 S 36.1 E 1900 59 grassland to woodland mixed woodland to grassland  
SAMB Samburu Kenya 23.5 380 0.6 N 37.5 E 880 59 semi-desert bushland with riparian woodland riparian with wooded grassland 
SIME Simean Mtns Ethiopia 8.7 1600 13.1 N 38.4 E 3200* 61 Afro-Alpine forest to moorland Afro-alpine 
TANA lower Tana River Kenya 27.5 475 1.9 S 40.1 E 40 59 semi-desert bushland with riparian forest riparian with wooded grassland 
TRKG Turkana - grassland Kenya 29.2 180 4.0 N 36.2 E 370 59 alkali grassland grassland 
TRKX Turkana - regional Kenya 29.2 180 4.2 N 36.3 E 400 59 semi-desert bushland with riparian woodlands dwarf shrubland 
TSVO Tsavo region Kenya 24.9 550 3.4 S 38.6 E 530 59 semi-desert bushland with riparian woodland riparian with wooded grassland 
 
1 abbreviation 
2 locality 
3 country 
4 Mean annual temperature 
5 Mean annual precipitation 
6 latitude 
7 longitude 
8 reference elevation (*sites with high variability in elevation) 
9 Reference for climate parameters  
10 colloquial description of vegetation 
11 UNESCO classification for African vegetation (Ref 1).  
 
 
 



Table S2. δ13C1750 values for modern East African large mammal by species (except Madoqua and 
Phacochoerus) in this study; also classified by the percentage of individuals that are C4-grazers (G), mixed 
C3-C4 (M), or C3-browsers (B) based on the isotope values (δ13C1750 values > -1‰, > -1‰ and < -8‰, and 
<-8‰, respectively). See Dataset I for complete data.  
 
  
 
 Taxon number δ13C1750 (±1σ)  percent  
    G M B  
Artiodactyla  
   Bovidae         
      Aepycerotini        
         Aepyceros melampus 66 -3.9 ±2.6 15 77 8 
      Alcelaphini        
         Alcelaphus buselaphus 54 3.3 ±1.3 100 0 0 
         Beatragus hunteri 2 2.0 ±0.4 100 0 0 
         Connochaetes taurinus 67 3.0 ±1.2 100 0 0 
         Damaliscus lunatus 18 3.2 ±1.0 100 0 0 
      Antilopini        
         Eudorcas thomsonii 22 -1.6 ±2.4 55 45 0 
         Litocranius walleri 17 -10.9 ±1.0 0 0 100 
         Nanger granti 73 -8.5 ±3.2 1 36 63 
         Nanger soemmerringii 1 -10.5  0 0 100 
         Ourebia ourebi 6 -2.6 ±4.5 0 0 100 
      Bovini        
          Syncerus caffer 167 0.9 ±3.3 84 13 4 
      Caprini        
         Capra walie 1 -11.1  0 0 100 
      Cephalophini        
         Cephalophus adersi 2 -10.6 ±3.3 0 0 100 
         Cephalophus callipygus 4 -11.7 ±4.0 0 25 75 
         Cephalophus dorsalis 2 -13.9 ±0.9 0 0 100 
         Cephalophus leucogaster 2 -13.3 ±0.3 0 0 100 
         Cephalophus natalensis 6 -11.4 ±1.3 0 0 100 
         Cephalophus nigrifrons 13 -14.3 ±1.5 0 0 100 
         Cephalophus sylvicultor 2 -13.1 ±0.8 0 0 100 
         Cephalophus weynsi 2 -12.7 ±2.5 0 0 100 
         Philantomba monticola 6 -12.0 ±1.6 0 0 100 
         Sylvicapra grimmia 16 -11.1 ±1.1 0 0 100 
      Hippotragini        
         Hippotragus equinus 4 2.0 ±3.0 75 25 0 
         Hippotragus niger 5 3.9 ±0.3 100 0 0 
         Oryx beisa 29 0.8 ±1.9 90 10 0 
      Neotragini        
          Madoqua sp. 52 -10.4 ±1.7 0 10 90 
          Neotragus batesi 1 -24.1  0 0 100 
          Neotragus moschatus 13 -12.6 ±0.7 0 0 100 
          Oreotragus oreotragus 9 -10.9 ±1.4 33 67 0 
          Raphicerus campestris 12 -10.7 ±1.0 0 0 100 
       Reduncini        
          Kobus ellipsiprymnus 55 1.9 ±1.3 96 4 0 
          Kobus kob 17 2.3 ±1.0 100 0 0 
          Redunca fulvorufula 4 2.3 ±1.0 100 0 0 
          Redunca redunca 14 0.7 ±4.0 71 29 0 
       Tragelaphini        



          Taurotragus oryx 35 -8.5 ±2.0 0 31 69 
          Tragelaphus buxtoni 5 -11.4 ±1.0 0 0 100 
          Tragelaphus euryceros 5 -14.9 ±0.9 0 0 100 
          Tragelaphus imberbis 18 -9.2 ±2.0 0 28 72 
          Tragelaphus scriptus 48 -12.1 ±1.7 0 0 100 
          Tragelaphus spekei 5 -13.1 ±5.1 0 20 80 
          Tragelaphus strepsiceros 10 -9.6 ±2.2 0 20 80  
   Giraffidae         
          Giraffa camelopardalis 61 -10.6 ±1.6 0 7 93 
          Okapia johnstoni 2 -19.5 ±0.1 0 0 100 
   Hippopotamidae         
          Choeropsis liberiensis 1 -15.2  0 0 100 
          Hippopotamus amphibius 186 -2.1 ±2.6 36 61 3 
   Suidae         
         Hylochoerus meinertzhageni 26 -14.1 ±3.3 0 0 100 
         Phacochoerus sp. 101 0.1 ±2.4 80 18 2 
         Potamochoerus larvatus 23 -8.7 ±4.2 4 39 57 
         Potamochoerus porcus 23 -13.1 ±2.0 0 4 96 
   Tragulidae         
          Hyemoschus aquaticus 1 -13.9  0 0 100 
          
          
Perissodactyla  
   Equidae         
         Equus burchellii 129 1.5 ±1.3 96 4 0 
         Equus grevyi 28 -0.6 ±2.2 68 29 4  
   Rhinocerotidae        
         Ceratotherium simum 13 1.4 ±1.2 100 0 0 
         Diceros bicornis 145 -10.2 ±1.2 0 6 94 
           
Proboscidea  
   Elephantidae        
         Loxodonta africana 225 -9.2 ±2.4 0 24 76 
         Loxodonta cyclotis 55 -14.1 ±1.3 0 0 100 
   
!



 
TABLE S3.  Percentages of APP taxa that are C4-grazers (G), mixed C3-C4 feeders (M), and C3-browsers 
(B) based on stable isotopes for ecosystems considered in this study. N is the total number of large mammal 
taxa analyzed in each locale/ecosystem. 
 
 
Locale Ecosystem  N G M B 
    
ABER forest  10 10 20 70 
AMBO wooded grassland  10 50 30 20 
ATHI wooded grassland  11 36 18 45 
AWSH riparian with wooded grassland  9 44 22 33 
BALE Afro-alpine  6 0 50 50 
CHYU wooded grassland  9 33 33 33 
ETHR wooded grassland  9 44 22 33 
GMBA wooded grassland  8 50 25 25 
ITRI closed canopy forest  10 0 0 100 
KBLE open to closed canopy forest  5 20 0 80 
KCST open to closed forest  7 14 14 71 
KDPO wooded grassland  7 71 0 29 
KZBG closed canopy forest  5 0 0 100 
LAIK wooded grassland  15 47 13 40 
LEDW wooded grassland  8 50 13 38 
LOPE closed canopy forest  5 0 20 80 
MAGO riparian with wooded grassland  10 40 30 30 
MARA wooded grassland  13 38 31 31 
MBRO wooded grassland / grassy woodland  8 75 13 13 
MERU riparian with wooded grassland  11 45 18 36 
MTKE forest  9 0 33 67 
NAKG grassland  8 75 25 0 
NBNP mixed woodland to grassland  11 36 27 36 
RFTV mixed woodland to grassland  10 50 20 30 
SAMB riparian with wooded grassland  12 42 17 42 
SIME Afro-alpine  5 0 0 100 
TANA riparian with wooded grassland  14 36 36 29 
TRKG grassland  6 83 17 0 
TRKX dwarf shrubland  9 33 0 67 
TSVO riparian with wooded grassland  14 43 21 36 



Table S4.  Average δ13C values for fossil APP (Artiodactyla, Perrisodactyla, and Proboscidea) taxa in the Turkana Basin by time interval, and average δ13C values for equivalent taxa in East and Central 
Africa.   
 
 Taxon used N    δ13C - Age intervals (Ma)    Modern N δ13C 
     4.3 to 4.0 4.0 to 3.4 3.4 to 3.0 3.0 to 2.5 2.5-2.35 2.35 to 1.9 1.9 to 1.5 1.5 to 1.3 1.3 to 1.0  
 
Artiodactyla Artiodactyla 
      Bovidae Bovidae 
 Aepycerotini 67 -4.3 -0.5 -2.2 -2.0  -0.2 -1.2 -1.1 -1.4 Aepycerotini 66 -3.9 
 Alcelaphini 129 1.0 -0.2 0.8 1.1 1.0 1.2 1.1 1.0 2.0 Alcelaphini 141 3.1 
 Antilopini 38 -7.6 -2.0 -2.9 -0.9  -2.1 -0.7 -2.5  Antilopini 122 -7.7 
 Bovini 21  -2.6 -2.7 -1.9  -0.2 0.7 1.0 2.1 Bovini 167 0.9 
 Caprini           Caprini 1 -11.1 
 Cephalophini           Cephalophini 63 -12.5 
 Hippotragini 17   -3.6 -2.2  0.5 0.6 -0.3  Hippotragini 38 1.3 
 Neotragini 1 -11.6         Neotragini 84 -10.4 
 Reduncini 43    -0.2 -0.8 -0.2 0.5 0.3 0.6 Reduncini 90 1.8 
 Tragelaphini 43 -7.8 -9.3 -6.0 -7.3 -3.0 -4.0 -5.6 -6.0 -4.1 Tragelaphini 126 -10.6 
      Camelidae           Camelidae   
 Camelus 2   -10.0 -7.3         domestic only   
      Giraffidae           Giraffidae 
 Giraffa 38 -11.5 -12.2 -11.2 -11.6 -12.8 -11.2 -11.6 -10.8  Giraffa 61 -10.6 
            Okapia 2 -19.5 
 Sivatherium 24 -10.2  -10.9 -9.8  -4.6 -1.5 0.9  Sivatherium   Extinct  
      Hippopotamidae           Hippopotamidae 
 Hippopotamus s.l. 115 -3.0 -4.4 -3.7 -2.9 -2.3 -0.9 -1.4 -1.3 0.0 Hippopotamus 186 -2.1 
      Suidae            Suidae  
 Kolpochoerus 38    -1.7  0.2 -0.6 -0.4  Hylochoerus 26 -14.1 
 Metridiochoerus 67    -0.2  -0.3 -0.2 0.1 0.0 Phacochoerus 101 0.1 
 Notochoerus 28 -3.9 -2.8 -1.4 -0.8  -0.7 -1.6   Notochoerus   Extinct  
 Nyanzachoerus 7 -2.3 -2.7 -2.9       Nyanzachoerus  Extinct  
            Potamochoerus 46 -10.9 
 Tragulidae           Tragulidae 
            Hyemoschus 1 -13.9 
  
Perissodactyla           Perissodactyla 
      Equidae           Equidae  
 Equus 39      0.0 0.2 -0.6 -0.7 Equus 157 1.1 
 Eurygnathohippus 33 1.2 -0.9 -1.3 -0.1  0.7 -0.3 -0.2  Eurygnathohippus   Extinct  
      Rhinocerotidae           Rhinocerotidae  
 Rhino G 19 -0.2 -0.8 0.1  -0.3 0.9 0.3  1.3 Ceratotherium 13 1.4 
 Rhino B 17 -10.2  -11.9 -9.3   -8.9   Diceros 145 -10.2 
  
Proboscidea           Proboscidea 
      Deinotheriidae           Deinotheriidae 
 Deinotherium 28 -12.6 -13.0 -11.1 -13.3 -13.2 -12.6 -11.8   Deinotherium   Extinct  



      Gomphotheriidae           Gomphotheriidae  
 Anancus 1 -0.1         Anancus   Extinct 
     Elephantidae           Elephantidae  
 Elephas 43 -2.7 -2.1 -0.6 -0.7 -2.5 0.1 -0.4 -1.5 -0.2 Elephas  Extirpated  
 Loxodonta 18 -2.3 -2.1 -1.8 0.4  0.1 0.3   Loxodonta 280 -10.2 
 
Total number of taxa  17 14 18 19 8 19 20 15 10 All East/Central Africa 21   
      (ex. Neotragini and Cephalophini) (16) (14) (18) (19) (8) (19) (20) (15) (10)   (19) 
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Figure S1. δ13C comparing results for treated and untreated sample powders.  
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mixing line for enamel; the thickness of the line is due to the uncertainty  in end-member values for C3 and C4 plants in xeric and mesic ecosystems and 
to the range in isotope enrichment values.   Diets derived from closed canopy vegetation are considered to have δ13C1750 enamel values < -14‰ (dark green);
 C3-browsers are from -14‰ to-8‰ (green); mixed C3/C4 are from -8‰ to  1‰  (blue); and C4-grazers are > -1‰ (yellow).
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Figure S4.  Percent G:M:B (shaded yellow, blue, and green, respectively) of APP major lineages through time in the 
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Compiled from Datasets I and II.
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Figure S5.  δ13C values of major APP lineages through time in the Kanapoi, Koobi Fora, and Nachukui Formations 
(from Dataset II); modern values includes all samples from East and Central Africa in Dataset I for each taxon plotted.  
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